Previous |  Up |  Next

Article

Title: New extension of the variational McShane integral of vector-valued functions (English)
Author: Kaliaj, Sokol Bush
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 2
Year: 2019
Pages: 137-148
Summary lang: English
.
Category: math
.
Summary: We define the Hake-variational McShane integral of Banach space valued functions defined on an open and bounded subset $G$ of $m$-dimensional Euclidean space $\mathbb {R}^{m}$. It is a "natural" extension of the variational McShane integral (the strong McShane integral) from $m$-dimensional closed non-degenerate intervals to open and bounded subsets of $\mathbb {R}^{m}$. We will show a theorem that characterizes the Hake-variational McShane integral in terms of the variational McShane integral. This theorem reduces the study of our integral to the study of the variational McShane integral. As an application, a full descriptive characterization of the Hake-variational McShane integral is presented in terms of the cubic derivative. (English)
Keyword: Hake-variational McShane integral
Keyword: variational McShane integral
Keyword: Banach space
Keyword: $m$-dimensional Euclidean space
MSC: 28B05
MSC: 46B25
MSC: 46G10
idZBL: Zbl 07088841
idMR: MR3974183
DOI: 10.21136/MB.2018.0114-17
.
Date available: 2019-06-21T11:32:32Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147755
.
Reference: [1] Piazza, L. Di: Variational measures in the theory of the integration in $\mathbb{R}^{m}$.Czech. Math. J. 51 (2001), 95-110. Zbl 1079.28500, MR 1814635, 10.1023/A:1013705821657
Reference: [2] Piazza, L. Di, Musial, K.: A characterization of variationally McShane integrable Banach-space valued functions.Ill. J. Math. 45 (2001), 279-289. Zbl 0999.28006, MR 1849999, 10.1215/ijm/1258138268
Reference: [3] Folland, G. B.: Real Analysis. Modern Techniques and Their Applications.Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. Wiley, New York (1999). Zbl 0924.28001, MR 1681462
Reference: [4] Fremlin, D. H.: The generalized McShane integral.Ill. J. Math. 39 (1995), 39-67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [5] Gordon, R. A.: The Denjoy extension of the Bochner, Pettis, and Dunford integrals.Stud. Math. 92 (1989), 73-91. Zbl 0681.28006, MR 0984851, 10.4064/sm-92-1-73-91
Reference: [6] Gordon, R. A.: The McShane integral of Banach-valued functions.Ill. J. Math. 34 (1990), 557-567. Zbl 0685.28003, MR 1053562, 10.1215/ijm/1255988170
Reference: [7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [8] Kaliaj, S. B.: The new extensions of the Henstock-Kurzweil and the McShane integrals of vector-valued functions.Mediterr. J. Math. 15 (2018), Article ID 22, 16 pages. Zbl 06860542, MR 3746986, 10.1007/s00009-018-1067-2
Reference: [9] Kaliaj, S. B.: Some remarks about descriptive characterizations of the strong McShane integral.(to appear) in Math. Bohem.
Reference: [10] Kurzweil, J., Schwabik, Š.: On the McShane integrability of Banach space-valued functions.Real Anal. Exchange 29 (2003-2004), 763-780. Zbl 1078.28007, MR 2083811, 10.14321/realanalexch.29.2.0763
Reference: [11] McShane, E. J.: Unifed Integration.Pure and Applied Mathematics 107. Academic Press, Orlando (1983). Zbl 0551.28001, MR 0740710
Reference: [12] Pfeffer, W. F.: Derivation and Integration.Cambridge Tracts in Mathematics 140. Cambridge University Press, Cambridge (2001). Zbl 0980.26008, MR 1816996, 10.1017/CBO9780511574764
Reference: [13] Schwabik, Š., Guoju, Y.: Topics in Banach Space Integration.Series in Real Analysis 10. World Scientific, Hackensack (2005). Zbl 1088.28008, MR 2167754, 10.1142/9789812703286
Reference: [14] Skvortsov, V. A., Solodov, A. P.: A variational integral for Banach-valued functions.Real Anal. Exch. 24 (1999), 799-805. Zbl 0967.28007, MR 1704751, 10.2307/44152997
Reference: [15] Thomson, B. S.: Derivates of interval functions.Mem. Am. Math. Soc. 93 (1991), 96 pages. Zbl 0734.26003, MR 1078198, 10.1090/memo/0452
Reference: [16] Thomson, B. S.: Differentiation.Handbook of Measure Theory. Vol. I. and II. North-Holland, Amsterdam (2002), 179-247 E. Pap. Zbl 1028.28001, MR 1954615, /10.1016/B978-044450263-6/50006-3
Reference: [17] Wu, C., Xiaobo, Y.: A Riemann-type definition of the Bochner integral.J. Math. Study 27 (1994), 32-36. Zbl 0947.28010, MR 1318255
.

Files

Files Size Format View
MathBohem_144-2019-2_3.pdf 298.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo