Title:
|
A relational semantics for the logic of bounded lattices (English) |
Author:
|
González, Luciano J. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
225-240 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper aims to propose a complete relational semantics for the so-called logic of bounded lattices, and prove a completeness theorem with regard to a class of two-sorted frames that is dually equivalent (categorically) to the variety of bounded lattices. (English) |
Keyword:
|
logic of bounded lattice |
Keyword:
|
polarity |
Keyword:
|
two-sorted frame |
Keyword:
|
relational semantics |
MSC:
|
03G10 |
MSC:
|
03G27 |
MSC:
|
06B15 |
idZBL:
|
Zbl 07088848 |
idMR:
|
MR3985854 |
DOI:
|
10.21136/MB.2018.0126-17 |
. |
Date available:
|
2019-07-24T11:09:49Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147770 |
. |
Reference:
|
[1] Allwein, G., Dunn, J. M.: Kripke models for linear logic.J. Symb. Log. 58 (1993), 514-545. Zbl 0795.03013, MR 1233922, 10.2307/2275217 |
Reference:
|
[2] Bimbó, K., Dunn, J. M.: Four-valued logic.Notre Dame J. Formal Logic 42 (2001), 171-192. Zbl 1034.03021, MR 2010180, 10.1305/ndjfl/1063372199 |
Reference:
|
[3] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order.Cambridge University Press, New York (2002). Zbl 1002.06001, MR 1902334, 10.1017/CBO9780511809088 |
Reference:
|
[4] Dunn, J. M., Gehrke, M., Palmigiano, A.: Canonical extensions and relational completeness of some substructural logics.J. Symb. Log. 70 (2005), 713-740. Zbl 1101.03021, MR 2155263, 10.2178/jsl/1122038911 |
Reference:
|
[5] Font, J. M.: Abstract Agebraic Logic. An Introductory Textbook.Studies in Logic 60. Mathematical Logic and Foundations. College Publications, London (2016). Zbl 1375.03001, MR 3558731 |
Reference:
|
[6] Font, J. M., Jansana, R.: A General Algebraic Semantics For Sentential Logics.Lecture Notes in Logic 7. Springer, Berlin (1996). Zbl 0865.03054, MR 1421569, 10.1017/9781316716915 |
Reference:
|
[7] Font, J. M., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic.Stud. Log. 74 (2003), 13-97. Zbl 1057.03058, MR 1996593, 10.1023/A:1024621922509 |
Reference:
|
[8] Gehrke, M.: Generalized Kripke frames.Stud. Log. 84 (2006), 241-275. Zbl 1115.03013, MR 2284541, 10.1007/s11225-006-9008-7 |
Reference:
|
[9] Gehrke, M., Jansana, R., Palmigiano, A.: $\Delta_1$-completions of a poset.Order 30 (2013), 39-64. Zbl 1317.06002, MR 3018209, 10.1007/s11083-011-9226-0 |
Reference:
|
[10] Gehrke, M., Jónsson, B.: Bounded distributive lattices with operators.Math. Jap. 40 (1994), 207-215. Zbl 0855.06009, MR 1297234 |
Reference:
|
[11] Gehrke, M., Jónsson, B.: Monotone bounded distributive lattice expansions.Math. Jap. 52 (2000), 197-213. Zbl 0972.06005, MR 1793267 |
Reference:
|
[12] Gehrke, M., Jónsson, B.: Bounded distributive lattice expansions.Math. Scand. 94 (2004), 13-45. Zbl 1077.06008, MR 2032334, 10.7146/math.scand.a-14428 |
Reference:
|
[13] Hartung, G.: A topological representation of lattices.Algebra Univers. 29 (1992), 273-299. Zbl 0790.06005, MR 1157437, 10.1007/BF01190610 |
Reference:
|
[14] Johnstone, P. T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). Zbl 0499.54001, MR 0698074 |
Reference:
|
[15] Jónsson, B., Tarski, A.: Boolean algebras with operators I.Am. J. Math. 73 (1951), 891-939. Zbl 0045.31505, MR 0044502, 10.2307/2372123 |
Reference:
|
[16] Jónsson, B., Tarski, A.: Boolean algebras with operators II.Am. J. Math. 74 (1952), 127-162. Zbl 0045.31601, MR 0045086, 10.2307/2372074 |
Reference:
|
[17] Kamide, N.: Kripke semantics for modal substructural logics.J. Logic Lang. Inf. 11 (2002), 453-470. Zbl 1017.03011, MR 1926009, 10.1023/A:1019915908844 |
Reference:
|
[18] MacCaull, W.: Relational semantics and a relational proof system for full Lambek calculus.J. Symb. Log. 63 (1998), 623-637. Zbl 0926.03024, MR 1625899, 10.2307/2586855 |
Reference:
|
[19] Moshier, M. A., Jipsen, P.: Topological duality and lattice expansions I: A topological construction of canonical extensions.Algebra Univers. 71 (2014), 109-126. Zbl 1307.06002, MR 3183386, 10.1007/s00012-014-0267-2 |
Reference:
|
[20] Moshier, M. A., Jipsen, P.: Topological duality and lattice expansions II: Lattice expansions with quasioperators.Algebra Univers. 71 (2014), 221-234. Zbl 1307.06003, MR 3192022, 10.1007/s00012-014-0275-2 |
Reference:
|
[21] Rebagliato, J., Verdú, V.: On the algebraization of some Gentzen systems.Ann. Soc. Math. Pol., Ser. IV, Fundam. Inf. 18 (1993), 319-338. Zbl 0788.03006, MR 1270344 |
Reference:
|
[22] Rebagliato, J., Verdú, V.: Algebraizable Gentzen systems and the deduction theorem for Gentzen systems.Mathematics Preprint. Series 175 University of Barcelona (1995). |
Reference:
|
[23] Urquhart, A.: A topological representation theory for lattices.Algebra Univers. 8 (1978), 45-58. Zbl 0382.06010, MR 0450150, 10.1007/BF02485369 |
. |