Previous |  Up |  Next

Article

Title: Note on $\alpha $-filters in distributive nearlattices (English)
Author: Calomino, Ismael
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 3
Year: 2019
Pages: 241-250
Summary lang: English
.
Category: math
.
Summary: In this short paper we introduce the notion of $\alpha $-filter in the class of distributive nearlattices and we prove that the $\alpha $-filters of a normal distributive nearlattice are strongly connected with the filters of the distributive nearlattice of the annihilators. (English)
Keyword: distributive nearlattice
Keyword: annihilator
Keyword: $\alpha $-filter
MSC: 03G10
MSC: 06A12
MSC: 06D50
idZBL: Zbl 07088849
idMR: MR3985855
DOI: 10.21136/MB.2018.0101-17
.
Date available: 2019-07-24T11:10:23Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147772
.
Reference: [1] Abbott, J. C.: Semi-boolean algebra.Mat. Vesn., N. Ser. 4 (1967), 177-198. Zbl 0153.02704, MR 0239957
Reference: [2] Araújo, J., Kinyon, M.: Independent axiom systems for nearlattices.Czech. Math. J. 61 (2011), 975-992. Zbl 1249.06003, MR 2886250, 10.1007/s10587-011-0062-6
Reference: [3] Calomino, I., Celani, S.: A note on annihilators in distributive nearlattices.Miskolc Math. Notes 16 (2015), 65-78. Zbl 1340.06007, MR 3384588, 10.18514/MMN.2015.1325
Reference: [4] Celani, S.: $\alpha$-ideals and $\alpha$-deductive systems in bounded Hilbert algebras.J. Mult.-{}Valued Logic and Soft Computing 21 (2013), 493-510. Zbl 06930415, MR 3242515
Reference: [5] Celani, S.: Notes on bounded Hilbert algebras with supremum.Acta Sci. Math. 80 (2014), 3-19. Zbl 1340.05137, MR 3236248, 10.14232/actasm-012-267-9
Reference: [6] Celani, S., Calomino, I.: Stone style duality for distributive nearlattices.Algebra Univers. 71 (2014), 127-153. Zbl 1301.06030, MR 3183387, 10.1007/s00012-014-0269-0
Reference: [7] Celani, S., Calomino, I.: On homomorphic images and the free distributive lattice extension of a distributive nearlattice.Rep. Math. Logic 51 (2016), 57-73. Zbl 06700646, MR 3562693, 10.4467/20842589RM.16.001.5282
Reference: [8] Chajda, I., Halaš, R.: An example of a congruence distributive variety having no near-unanimity term.Acta Univ. M. Belii, Ser. Math. 13 (2006), 29-31. Zbl 1132.08002, MR 2353310
Reference: [9] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures.Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). Zbl 1117.06001, MR 2326262
Reference: [10] Chajda, I., Kolařík, M.: Ideals, congruences and annihilators on nearlattices.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 46 (2007), 25-33. Zbl 1147.06002, MR 2387490
Reference: [11] Chajda, I., Kolařík, M.: Nearlattices.Discrete Math. 308 (2008), 4906-4913. Zbl 1151.06004, MR 2446101, 10.1016/j.disc.2007.09.009
Reference: [12] Cornish, W. H.: Normal lattices.J. Aust. Math. Soc. 14 (1972), 200-215. Zbl 0247.06009, MR 0313148, 10.1017/S1446788700010041
Reference: [13] Cornish, W. H.: Annulets and $\alpha$-ideals in distributive lattices.J. Aust. Math. Soc. 15 (1973), 70-77. Zbl 0274.06008, MR 0344170, 10.1017/S1446788700012775
Reference: [14] Cornish, W. H., Hickman, R. C.: Weakly distributive semilattices.Acta Math. Acad. Sci. Hung. 32 (1978), 5-16. Zbl 0497.06005, MR 0551490, 10.1007/BF01902195
Reference: [15] González, L. J.: The logic of distributive nearlattices.Soft Computing 22 (2018), 2797-2807. 10.1007/s00500-017-2750-0
Reference: [16] Hickman, R.: Join algebras.Commun. Algebra 8 (1980), 1653-1685. Zbl 0436.06003, MR 0585925, 10.1080/00927878008822537
.

Files

Files Size Format View
MathBohem_144-2019-3_2.pdf 283.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo