Previous |  Up |  Next

Article

Title: Some approximate fixed point theorems without continuity of the operator using auxiliary functions (English)
Author: Chandok, Sumit
Author: Ansari, Arslan Hojjat
Author: Narang, Tulsi Dass
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 3
Year: 2019
Pages: 251-271
Summary lang: English
.
Category: math
.
Summary: We introduce partial generalized convex contractions of order $4$ and rank $4$ using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in $\alpha $-complete metric spaces and $\mu $-complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained. Some examples are also provided to illustrate the main results and to show the usability of the given hypotheses. (English)
Keyword: $\varepsilon $-fixed point
Keyword: $\alpha $-admissible mapping
Keyword: partial generalized convex contraction of order $4$ and rank $4$
Keyword: $\alpha $-complete metric space
MSC: 47H10
MSC: 54H25
idZBL: Zbl 07088850
idMR: MR3985856
DOI: 10.21136/MB.2018.0095-17
.
Date available: 2019-07-24T11:10:57Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147773
.
Reference: [1] Ansari, A. H., Shukla, S.: Some fixed point theorems for ordered $F$-$({\cal F},h)$-contraction and subcontraction in 0-$f$-orbitally complete partial metric spaces.J. Adv. Math. Stud. 9 (2016), 37-53. Zbl 1353.54030, MR 3495331
Reference: [2] Berinde, M.: Approximate fixed point theorems.Stud. Univ. Babeş-Bolyai, Math. 51 (2006), 11-25. Zbl 1164.54028, MR 2246435
Reference: [3] Browder, F. E., Petryshyn, W. V.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Am. Math. Soc. 72 (1966), 571-575. Zbl 0138.08202, MR 0190745, 10.1090/S0002-9904-1966-11544-6
Reference: [4] Chandok, S., Ansari, A. H.: Some results on generalized nonlinear contractive mappings.Comm. Opt. Theory 2017 (2017), Article ID 27, 12 pages. 10.23952/cot.2017.27
Reference: [5] Dey, D., Laha, A. K., Saha, M.: Approximate coincidence point of two nonlinear mappings.J. Math. 2013 (2013), Article No. 962058, 4 pages. Zbl 1268.54022, MR 3100732, 10.1155/2013/962058
Reference: [6] Dey, D., Saha, M.: Approximate fixed point of Reich operator.Acta Math. Univ. Comen., New Ser. 82 (2013), 119-123. Zbl 1324.54067, MR 3028154
Reference: [7] Hussain, N., Kutbi, M. A., Salimi, P.: Fixed point theory in $\alpha$-complete metric spaces with applications.Abstr. Appl. Anal. 2014 (2014), Article ID 280817, 11 pages. MR 3166589, 10.1155/2014/280817
Reference: [8] Istrăţescu, V. I.: Some fixed point theorems for convex contraction mappings and mappings with convex diminishing diameters. I.Ann. Mat. Pura Appl., IV. Ser. 130 (1982), 89-104. Zbl 0477.54033, MR 0663966, 10.1007/BF01761490
Reference: [9] Jaradat, M. M. M., Mustafa, Z., Ansari, A. H., Chandok, S., Dolićanin, Ć.: Some approximate fixed point results and application on graph theory for partial $(h,F)$-generalized convex contraction mappings with special class of functions on complete metric space.J. Nonlinear Sci. Appl. 10 (2017), 1695-1708. MR 3639736, 10.22436/jnsa.010.04.32
Reference: [10] Kohlenbach, U., Leuştean, L.: The approximate fixed point property in product spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66 (2007), 806-818. Zbl 1118.47047, MR 2288433, 10.1016/j.na.2005.12.020
Reference: [11] Latif, A., Sintunavarat, W., Ninsri, A.: Approximate fixed point theorems for partial generalized convex contraction mappings in $\alpha$-complete metric spaces.Taiwanese J. Math. 19 (2015), 315-333. Zbl 1357.54034, MR 3313418, 10.11650/tjm.19.2015.4746
Reference: [12] Miandaragh, M. A., Postolache, M., Rezapour, S.: Approximate fixed points of generalized convex contractions.Fixed Point Theory Appl. 2013 (2013), Article No. 255, 8 pages. Zbl 1321.54089, MR 3213091, 10.1186/1687-1812-2013-255
Reference: [13] Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets.J. Math. Anal. Appl. 62 (1978), 104-113. Zbl 0375.47031, MR 0514991, 10.1016/0022-247X(78)90222-6
Reference: [14] Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha$-$\psi$-contractive type mappings.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 2154-2165. Zbl 1242.54027, MR 2870907, 10.1016/j.na.2011.10.014
Reference: [15] Tijs, S., Torre, A., Brânzei, R.: Approximate fixed point theorems.Libertas Math. 23 (2003), 35-39 \99999MR99999 2002283 \vfill. Zbl 1056.47046, MR 2002283
.

Files

Files Size Format View
MathBohem_144-2019-3_3.pdf 335.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo