Previous |  Up |  Next

Article

Title: Resolving sets of directed Cayley graphs for the direct product of cyclic groups (English)
Author: Mengesha, Demelash Ashagrie
Author: Vetrík, Tomáš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 621-636
Summary lang: English
.
Category: math
.
Summary: A directed Cayley graph $C(\Gamma ,X)$ is specified by a group $\Gamma $ and an identity-free generating set $X$ for this group. Vertices of $C(\Gamma ,X)$ are elements of $\Gamma $ and there is a directed edge from the vertex $u$ to the vertex $v$ in $C(\Gamma ,X)$ if and only if there is a generator $x \in X$ such that $ux = v$. We study graphs $C(\Gamma ,X)$ for the direct product $Z_m \times Z_n$ of two cyclic groups $Z_m$ and $Z_n$, and the generating set $X = \{ (0,1), (1, 0), (2,0), \dots , (p,0) \}$. We present resolving sets which yield upper bounds on the metric dimension of these graphs for $p = 2$ and $3$. (English)
Keyword: metric dimension
Keyword: resolving set
Keyword: Cayley graph
Keyword: direct product
Keyword: cyclic group
MSC: 05C12
MSC: 05C25
idZBL: Zbl 07088808
idMR: MR3989270
DOI: 10.21136/CMJ.2019.0127-17
.
Date available: 2019-07-24T11:15:08Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147781
.
Reference: [1] Ahmad, A., Imran, M., Al-Mushayt, O., Bokhary, S. A. U. H.: On the metric dimension of barycentric subdivision of Cayley graphs Cay$(Z_n\oplus Z_m)$.Miskolc Math. Notes 16 (2016), 637-646. Zbl 1349.05082, MR 3454129, 10.18514/MMN.2015.1192
Reference: [2] Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R.: Resolvability in graphs and the metric dimension of a graph.Discrete Appl. Math. 105 (2000), 99-113. Zbl 0958.05042, MR 1780464, 10.1016/S0166-218X(00)00198-0
Reference: [3] Fehr, M., Gosselin, S., Oellermann, O. R.: The metric dimension of Cayley digraphs.Discrete Math. 306 (2006), 31-41. Zbl 1085.05034, MR 2202072, 10.1016/j.disc.2005.09.015
Reference: [4] Harary, F., Melter, R. A.: On the metric dimension of a graph.Ars Comb. 2 (1976), 191-195. Zbl 0349.05118, MR 0457289
Reference: [5] Imran, M.: On the metric dimension of barycentric subdivision of Cayley graphs.Acta Math. Appl. Sin. Engl. Ser. 32 (2016), 1067-1072. Zbl 06700451, MR 3552871, 10.1007/s10255-016-0627-0
Reference: [6] Imran, M., Baig, A. Q., Bokhary, S. A. U. H., Javaid, I.: On the metric dimension of circulant graphs.Appl. Math. Lett. 25 (2012), 320-325. Zbl 1243.05072, MR 2855980, 10.1016/j.aml.2011.09.008
Reference: [7] Javaid, I., Rahim, M. T., Ali, K.: Families of regular graphs with constant metric dimension.Util. Math. 75 (2008), 21-33. Zbl 1178.05037, MR 2389696
Reference: [8] Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs.Discrete Appl. Math. 70 (1996), 217-229. Zbl 0865.68090, MR 1410574, 10.1016/0166-218X(95)00106-2
Reference: [9] Melter, R. A., Tomescu, I.: Metric bases in digital geometry.Comput. Vision Graphics Image Process 25 (1984), 113-121. Zbl 0591.51023, MR 0752034, 10.1016/0734-189X(84)90051-3
Reference: [10] Oellermann, O. R., Pawluck, C. D., Stokke, A.: The metric dimension of Cayley digraphs of Abelian groups.Ars Comb. 81 (2006), 97-111. Zbl 1189.05055, MR 2267805
Reference: [11] Slater, P. J.: Leaves of trees.Proc. 6th Southeast. Conf. Combinatorics, Graph Theory and Computing Congressus Numerantium 14, Utilitas Mathematica, Winnipeg (1975), 549-559. Zbl 0316.05102, MR 0422062
.

Files

Files Size Format View
CzechMathJ_69-2019-3_3.pdf 284.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo