Previous |  Up |  Next

Article

Title: Existence and uniqueness of solutions for gradient systems without a compactness embedding condition (English)
Author: Boussandel, Sahbi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 637-651
Summary lang: English
.
Category: math
.
Summary: This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple $(V,H,V')$ considered in the setting of this paper is such that the embedding $V\hookrightarrow H$ is only continuous. (English)
Keyword: gradient system
Keyword: existence and uniqueness of solution
Keyword: Galerkin method
Keyword: quadratic form
Keyword: weakly lower semicontinuity
Keyword: diffusion equation
MSC: 35F20
MSC: 35F25
MSC: 35F30
MSC: 35K57
MSC: 47H05
MSC: 47J05
idZBL: Zbl 07088809
idMR: MR3989271
DOI: 10.21136/CMJ.2019.0416-17
.
Date available: 2019-07-24T11:15:36Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147782
.
Reference: [1] Ahmed, N. U., Xiang, X.: Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations.Nonlinear Anal., Theory Methods Appl. 22 (1994), 81-89. Zbl 0806.34051, MR 1256172, 10.1016/0362-546x(94)90007-8
Reference: [2] Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. 1: Abstract Linear Theory.Monographs in Mathematics 89, Birkhäuser, Basel (1995). Zbl 0819.35001, MR 1345385, 10.1007/978-3-0348-9221-6
Reference: [3] Arendt, W., Chill, R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 523-539. Zbl 1223.35202, MR 2722654, 10.2422/2036-2145.2010.3.04
Reference: [4] W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, U. Groh, H. P. Lotz, F. Neubrander: One-Parameter Semigroups of Positive Operators.Lecture Notes in Mathematics 1184, Springer, Berlin R. Nagel (1986). Zbl 0585.47030, MR 0839450, 10.1007/bfb0074922
Reference: [5] Attouch, H., Damlamian, A.: Strong solutions for parabolic variational inequalities.Nonlinear Anal., Theory, Methods Appl. 2 (1978), 329-353. Zbl 0395.35045, MR 0512663, 10.1016/0362-546x(78)90021-4
Reference: [6] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leyden (1976). Zbl 0328.47035, MR 0390843
Reference: [7] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems.J. Differ. Equations 250 (2011), 929-948. Zbl 1209.47020, MR 2737819, 10.1016/j.jde.2010.09.009
Reference: [8] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies 5, Notas de Matemática (50). North-Holland Publishing, Amsterdam; American Elsevier Publishing, New York (1973), French. Zbl 0252.47055, MR 0348562
Reference: [9] Chill, R., Fašangová, E.: Gradient Systems.Lecture Notes of the 13th International Internet Seminar, MatfyzPress, Praha (2010).
Reference: [10] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Studies in Applied Mechanics 2, Elsevier, Amsterdam (1980). Zbl 0426.35001, MR 0558764, 10.1016/B978-0-444-41758-9.50004-8
Reference: [11] Hestenes, M. R.: Applications of the theory of quadratic forms in Hilbert space to the calculus of variations.Pac. J. Math. 1 (1951), 525-581. Zbl 0045.20806, MR 0046590, 10.2140/pjm.1951.1.525
Reference: [12] Hirano, N.: Nonlinear evolution equations with nonmonotonic perturbations.Nonlinear Anal., Theory Methods Appl. 13 (1989), 599-609. Zbl 0682.34010, MR 0998507, 10.1016/0362-546x(89)90081-3
Reference: [13] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023
Reference: [14] Leoni, G.: A First Course in Sobolev Spaces.Graduate Studies in Mathematics 105, American Mathematical Society, Providence (2009). Zbl 1180.46001, MR 2527916, 10.1090/gsm/105
Reference: [15] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific, Singapore (1996). Zbl 0884.35001, MR 1465184, 10.1142/3302
Reference: [16] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques, Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693
Reference: [17] Littig, S., Voigt, J.: Porous medium equation and fast diffusion equation as gradient systems.Czech. Math. J. 4 (2015), 869-889. Zbl 1363.35083, MR 3441322, 10.1007/s10587-015-0214-1
Reference: [18] Ôtani, M.: On the existence of strong solutions for $\frac{ du}{ dt}(t)+\partial\psi^1(u(t))- \partial\psi^2(u(t))\ni f(t)$.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 575-605. Zbl 0386.47040, MR 0477358
Reference: [19] Ôtani, M.: Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems.J. Differ. Equations 46 (1982), 268-289. Zbl 0495.35042, MR 0675911, 10.1016/0022-0396(82)90119-x
Reference: [20] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1
Reference: [21] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.ISNM. International Series of Numerical Mathematics 153, Birkhäuser, Basel (2013). Zbl 1270.35005, MR 3014456, 10.1007/978-3-0348-0513-1
Reference: [22] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49, American Mathematical Society, Providence (1997). Zbl 0870.35004, MR 1422252, 10.1090/surv/049
Reference: [23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0981-2
.

Files

Files Size Format View
CzechMathJ_69-2019-3_4.pdf 321.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo