Title:
|
Existence and uniqueness of solutions for gradient systems without a compactness embedding condition (English) |
Author:
|
Boussandel, Sahbi |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
637-651 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper is devoted to the existence and uniqueness of solutions for gradient systems of evolution which involve gradients taken with respect to time-variable inner products. The Gelfand triple $(V,H,V')$ considered in the setting of this paper is such that the embedding $V\hookrightarrow H$ is only continuous. (English) |
Keyword:
|
gradient system |
Keyword:
|
existence and uniqueness of solution |
Keyword:
|
Galerkin method |
Keyword:
|
quadratic form |
Keyword:
|
weakly lower semicontinuity |
Keyword:
|
diffusion equation |
MSC:
|
35F20 |
MSC:
|
35F25 |
MSC:
|
35F30 |
MSC:
|
35K57 |
MSC:
|
47H05 |
MSC:
|
47J05 |
idZBL:
|
Zbl 07088809 |
idMR:
|
MR3989271 |
DOI:
|
10.21136/CMJ.2019.0416-17 |
. |
Date available:
|
2019-07-24T11:15:36Z |
Last updated:
|
2021-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147782 |
. |
Reference:
|
[1] Ahmed, N. U., Xiang, X.: Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations.Nonlinear Anal., Theory Methods Appl. 22 (1994), 81-89. Zbl 0806.34051, MR 1256172, 10.1016/0362-546x(94)90007-8 |
Reference:
|
[2] Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. 1: Abstract Linear Theory.Monographs in Mathematics 89, Birkhäuser, Basel (1995). Zbl 0819.35001, MR 1345385, 10.1007/978-3-0348-9221-6 |
Reference:
|
[3] Arendt, W., Chill, R.: Global existence for quasilinear diffusion equations in isotropic nondivergence form.Ann. Sc. Norm. Super. Pisa, Cl. Sci. 9 (2010), 523-539. Zbl 1223.35202, MR 2722654, 10.2422/2036-2145.2010.3.04 |
Reference:
|
[4] W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, U. Groh, H. P. Lotz, F. Neubrander: One-Parameter Semigroups of Positive Operators.Lecture Notes in Mathematics 1184, Springer, Berlin R. Nagel (1986). Zbl 0585.47030, MR 0839450, 10.1007/bfb0074922 |
Reference:
|
[5] Attouch, H., Damlamian, A.: Strong solutions for parabolic variational inequalities.Nonlinear Anal., Theory, Methods Appl. 2 (1978), 329-353. Zbl 0395.35045, MR 0512663, 10.1016/0362-546x(78)90021-4 |
Reference:
|
[6] Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leyden (1976). Zbl 0328.47035, MR 0390843 |
Reference:
|
[7] Boussandel, S.: Global existence and maximal regularity of solutions of gradient systems.J. Differ. Equations 250 (2011), 929-948. Zbl 1209.47020, MR 2737819, 10.1016/j.jde.2010.09.009 |
Reference:
|
[8] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies 5, Notas de Matemática (50). North-Holland Publishing, Amsterdam; American Elsevier Publishing, New York (1973), French. Zbl 0252.47055, MR 0348562 |
Reference:
|
[9] Chill, R., Fašangová, E.: Gradient Systems.Lecture Notes of the 13th International Internet Seminar, MatfyzPress, Praha (2010). |
Reference:
|
[10] Fučík, S., Kufner, A.: Nonlinear Differential Equations.Studies in Applied Mechanics 2, Elsevier, Amsterdam (1980). Zbl 0426.35001, MR 0558764, 10.1016/B978-0-444-41758-9.50004-8 |
Reference:
|
[11] Hestenes, M. R.: Applications of the theory of quadratic forms in Hilbert space to the calculus of variations.Pac. J. Math. 1 (1951), 525-581. Zbl 0045.20806, MR 0046590, 10.2140/pjm.1951.1.525 |
Reference:
|
[12] Hirano, N.: Nonlinear evolution equations with nonmonotonic perturbations.Nonlinear Anal., Theory Methods Appl. 13 (1989), 599-609. Zbl 0682.34010, MR 0998507, 10.1016/0362-546x(89)90081-3 |
Reference:
|
[13] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasilinear Equations of Parabolic Type.Translations of Mathematical Monographs 23, American Mathematical Society, Providence (1968). Zbl 0174.15403, MR 0241822, 10.1090/mmono/023 |
Reference:
|
[14] Leoni, G.: A First Course in Sobolev Spaces.Graduate Studies in Mathematics 105, American Mathematical Society, Providence (2009). Zbl 1180.46001, MR 2527916, 10.1090/gsm/105 |
Reference:
|
[15] Lieberman, G. M.: Second Order Parabolic Differential Equations.World Scientific, Singapore (1996). Zbl 0884.35001, MR 1465184, 10.1142/3302 |
Reference:
|
[16] Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires.Etudes mathematiques, Dunod, Paris (1969), French. Zbl 0189.40603, MR 0259693 |
Reference:
|
[17] Littig, S., Voigt, J.: Porous medium equation and fast diffusion equation as gradient systems.Czech. Math. J. 4 (2015), 869-889. Zbl 1363.35083, MR 3441322, 10.1007/s10587-015-0214-1 |
Reference:
|
[18] Ôtani, M.: On the existence of strong solutions for $\frac{ du}{ dt}(t)+\partial\psi^1(u(t))- \partial\psi^2(u(t))\ni f(t)$.J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 575-605. Zbl 0386.47040, MR 0477358 |
Reference:
|
[19] Ôtani, M.: Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems.J. Differ. Equations 46 (1982), 268-289. Zbl 0495.35042, MR 0675911, 10.1016/0022-0396(82)90119-x |
Reference:
|
[20] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations.Applied Mathematical Sciences 44, Springer, New York (1983). Zbl 0516.47023, MR 0710486, 10.1007/978-1-4612-5561-1 |
Reference:
|
[21] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.ISNM. International Series of Numerical Mathematics 153, Birkhäuser, Basel (2013). Zbl 1270.35005, MR 3014456, 10.1007/978-3-0348-0513-1 |
Reference:
|
[22] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49, American Mathematical Society, Providence (1997). Zbl 0870.35004, MR 1422252, 10.1090/surv/049 |
Reference:
|
[23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators.Springer, New York (1990). Zbl 0684.47029, MR 1033498, 10.1007/978-1-4612-0981-2 |
. |