Title:
|
On the number of isomorphism classes of derived subgroups (English) |
Author:
|
Taghvasani, Leyli Jafari |
Author:
|
Marzang, Soran |
Author:
|
Zarrin, Mohammad |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
3 |
Year:
|
2019 |
Pages:
|
665-670 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014). (English) |
Keyword:
|
derived subgroup |
Keyword:
|
simple group |
MSC:
|
20F24 |
idZBL:
|
Zbl 07088811 |
idMR:
|
MR3989273 |
DOI:
|
10.21136/CMJ.2018.0464-17 |
. |
Date available:
|
2019-07-24T11:16:30Z |
Last updated:
|
2021-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147784 |
. |
Reference:
|
[1] Barry, M. J. J., Ward, M. B.: Simple groups contain minimal simple groups.Publ. Mat., Barc. 41 (1997), 411-415. Zbl 0894.20019, MR 1485492, 10.5565/PUBLMAT_41297_07 |
Reference:
|
[2] Group, The GAP: GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4.(2005), Available at http://www.gap-system.org. SW: https://swmath.org/software/320 |
Reference:
|
[3] Giovanni, F. de, Robinson, D. J. S.: Groups with finitely many derived subgroups.J. Lond. Math. Soc., II. Ser. 71 (2005), 658-668. Zbl 1084.20026, MR 2132376, 10.1112/S0024610705006484 |
Reference:
|
[4] Herzog, M.: On finite simple groups of order divisible by three primes only.J. Algebra 10 (1968), 383-388. Zbl 0167.29101, MR 0233881, 10.1016/0021-8693(68)90088-4 |
Reference:
|
[5] Herzog, M., Longobardi, P., Maj, M.: On the number of commutators in groups.Ischia Group Theory 2004 Z. Arad et al. Contemporary Mathematics 402, American Mathematical Society, Providence (2006), 181-192. Zbl 1122.20017, MR 2258662, 10.1090/conm/402 |
Reference:
|
[6] Huppert, B.: Finite Groups I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3 |
Reference:
|
[7] Liebeck, M. W., O'Brien, E. A., Shalev, A., Tiep, P. H.: The Ore conjecture.J. Eur. Math. Soc. (JEMS) 12 (2010), 939-1008. Zbl 1205.20011, MR 2654085, 10.4171/JEMS/220 |
Reference:
|
[8] Longobardi, P., Maj, M., Robinson, D. J. S.: Locally finite groups with finitely many isomorphism classes of derived subgroups.J. Algebra 393 (2013), 102-119. Zbl 1294.20049, MR 3090061, 10.1016/j.jalgebra.2013.06.036 |
Reference:
|
[9] Longobardi, P., Maj, M., Robinson, D. J. S., Smith, H.: On groups with two isomorphism classes of derived subgroups.Glasg. Math. J. 55 (2013), 655-668. Zbl 1287.20046, MR 3084668, 10.1017/S0017089512000821 |
Reference:
|
[10] Shi, W.: On simple $K_4$-groups.Chin. Sci. Bull. 36 (1991), 1281-1283. |
Reference:
|
[11] Zarrin, M.: On groups with finitely many derived subgroups.J. Algebra Appl. 13 (2014), Article ID 1450045, 5 pages. Zbl 1303.20044, MR 3200123, 10.1142/S0219498814500455 |
. |