Previous |  Up |  Next

Article

Title: On the number of isomorphism classes of derived subgroups (English)
Author: Taghvasani, Leyli Jafari
Author: Marzang, Soran
Author: Zarrin, Mohammad
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 665-670
Summary lang: English
.
Category: math
.
Summary: We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014). (English)
Keyword: derived subgroup
Keyword: simple group
MSC: 20F24
idZBL: Zbl 07088811
idMR: MR3989273
DOI: 10.21136/CMJ.2018.0464-17
.
Date available: 2019-07-24T11:16:30Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147784
.
Reference: [1] Barry, M. J. J., Ward, M. B.: Simple groups contain minimal simple groups.Publ. Mat., Barc. 41 (1997), 411-415. Zbl 0894.20019, MR 1485492, 10.5565/PUBLMAT_41297_07
Reference: [2] Group, The GAP: GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4.(2005), Available at http://www.gap-system.org. SW: https://swmath.org/software/320
Reference: [3] Giovanni, F. de, Robinson, D. J. S.: Groups with finitely many derived subgroups.J. Lond. Math. Soc., II. Ser. 71 (2005), 658-668. Zbl 1084.20026, MR 2132376, 10.1112/S0024610705006484
Reference: [4] Herzog, M.: On finite simple groups of order divisible by three primes only.J. Algebra 10 (1968), 383-388. Zbl 0167.29101, MR 0233881, 10.1016/0021-8693(68)90088-4
Reference: [5] Herzog, M., Longobardi, P., Maj, M.: On the number of commutators in groups.Ischia Group Theory 2004 Z. Arad et al. Contemporary Mathematics 402, American Mathematical Society, Providence (2006), 181-192. Zbl 1122.20017, MR 2258662, 10.1090/conm/402
Reference: [6] Huppert, B.: Finite Groups I.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [7] Liebeck, M. W., O'Brien, E. A., Shalev, A., Tiep, P. H.: The Ore conjecture.J. Eur. Math. Soc. (JEMS) 12 (2010), 939-1008. Zbl 1205.20011, MR 2654085, 10.4171/JEMS/220
Reference: [8] Longobardi, P., Maj, M., Robinson, D. J. S.: Locally finite groups with finitely many isomorphism classes of derived subgroups.J. Algebra 393 (2013), 102-119. Zbl 1294.20049, MR 3090061, 10.1016/j.jalgebra.2013.06.036
Reference: [9] Longobardi, P., Maj, M., Robinson, D. J. S., Smith, H.: On groups with two isomorphism classes of derived subgroups.Glasg. Math. J. 55 (2013), 655-668. Zbl 1287.20046, MR 3084668, 10.1017/S0017089512000821
Reference: [10] Shi, W.: On simple $K_4$-groups.Chin. Sci. Bull. 36 (1991), 1281-1283.
Reference: [11] Zarrin, M.: On groups with finitely many derived subgroups.J. Algebra Appl. 13 (2014), Article ID 1450045, 5 pages. Zbl 1303.20044, MR 3200123, 10.1142/S0219498814500455
.

Files

Files Size Format View
CzechMathJ_69-2019-3_6.pdf 253.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo