Previous |  Up |  Next

Article

Keywords:
derived subgroup; simple group
Summary:
We show that a finite nonabelian characteristically simple group $G$ satisfies $n=|\pi (G)|+2$ if and only if $G\cong A_5$, where $n$ is the number of isomorphism classes of derived subgroups of $G$ and $\pi (G)$ is the set of prime divisors of the group $G$. Also, we give a negative answer to a question raised in M. Zarrin (2014).
References:
[1] Barry, M. J. J., Ward, M. B.: Simple groups contain minimal simple groups. Publ. Mat., Barc. 41 (1997), 411-415. DOI 10.5565/PUBLMAT_41297_07 | MR 1485492 | Zbl 0894.20019
[2] Group, The GAP: GAP - Groups, Algorithms, Programming - a System for Computational Discrete Algebra, Version 4.4. (2005), Available at http://www.gap-system.org SW: https://swmath.org/software/320
[3] Giovanni, F. de, Robinson, D. J. S.: Groups with finitely many derived subgroups. J. Lond. Math. Soc., II. Ser. 71 (2005), 658-668. DOI 10.1112/S0024610705006484 | MR 2132376 | Zbl 1084.20026
[4] Herzog, M.: On finite simple groups of order divisible by three primes only. J. Algebra 10 (1968), 383-388. DOI 10.1016/0021-8693(68)90088-4 | MR 0233881 | Zbl 0167.29101
[5] Herzog, M., Longobardi, P., Maj, M.: On the number of commutators in groups. Ischia Group Theory 2004 Z. Arad et al. Contemporary Mathematics 402, American Mathematical Society, Providence (2006), 181-192. DOI 10.1090/conm/402 | MR 2258662 | Zbl 1122.20017
[6] Huppert, B.: Finite Groups I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[7] Liebeck, M. W., O'Brien, E. A., Shalev, A., Tiep, P. H.: The Ore conjecture. J. Eur. Math. Soc. (JEMS) 12 (2010), 939-1008. DOI 10.4171/JEMS/220 | MR 2654085 | Zbl 1205.20011
[8] Longobardi, P., Maj, M., Robinson, D. J. S.: Locally finite groups with finitely many isomorphism classes of derived subgroups. J. Algebra 393 (2013), 102-119. DOI 10.1016/j.jalgebra.2013.06.036 | MR 3090061 | Zbl 1294.20049
[9] Longobardi, P., Maj, M., Robinson, D. J. S., Smith, H.: On groups with two isomorphism classes of derived subgroups. Glasg. Math. J. 55 (2013), 655-668. DOI 10.1017/S0017089512000821 | MR 3084668 | Zbl 1287.20046
[10] Shi, W.: On simple $K_4$-groups. Chin. Sci. Bull. 36 (1991), 1281-1283.
[11] Zarrin, M.: On groups with finitely many derived subgroups. J. Algebra Appl. 13 (2014), Article ID 1450045, 5 pages. DOI 10.1142/S0219498814500455 | MR 3200123 | Zbl 1303.20044
Partner of
EuDML logo