[1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.:
Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm. U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190.
MR 3785191
[2] Alvarez, F., Attouch, H.:
An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9 (2001), 3–11.
DOI 10.1023/A:1011253113155 |
MR 1845931
[3] Beck, A., Teboull, M.:
Gradient-based algorithms with applications to signal-recovery problems. Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88.
MR 2767564
[4] Beck, A., Teboulle, M.:
A fast iterative shrinkage-thresholding algorithm for linear inverse problem. SIAM J. Imaging Sci. 2 (1) (2009), 183–202.
DOI 10.1137/080716542 |
MR 2486527
[5] Bot, R.I., Csetnek, E.R.:
An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem. J. Optim. Theory Appl. 171 (2016), 600–616.
DOI 10.1007/s10957-015-0730-z |
MR 3557440
[6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.:
An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions. EJCO 4 (2016), 3–25.
MR 3500980
[8] Cai, G., Shehu, Y.:
An iterative algorithm for fixed point problem and convex minimization problem with applications. Fixed Point Theory and Appl. 2015 123 (2015), 18 pp.
MR 3303116
[9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.:
Some iterative methods for finding fixed points and for solving constrained convex minimization problems. Nonlinear Anal. 74 (2011), 5286–5302.
DOI 10.1016/j.na.2011.05.005 |
MR 2819274
[11] Chambolle, A., Dossal, C.:
On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm. J. Optim. Theory Appl. 166 (2015), 968–982.
DOI 10.1007/s10957-015-0746-4 |
MR 3375610
[12] Chan, R.H., Ma, S., Jang, J.F.:
Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267.
DOI 10.1137/15100463X |
MR 3404682
[14] Combettes, P.L., Pesquet, J.-C.:
Proximal Splitting Methods in Signal Processing. Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212.
MR 2858838
[15] Fichera, G.:
Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140.
MR 0178631
[16] Geobel, K., Kirk, W.A.:
Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990.
MR 1074005
[18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.:
Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces. Numer. Algorithms (2018),
https://doi.org/10.1007/s11075-018-0633-9 DOI 10.1007/s11075-018-0633-9 |
MR 4027651
[19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.:
An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces. Adv. Pure Appl. Math. 9 (3) (2018), 167–183.
DOI 10.1515/apam-2017-0037 |
MR 3819533
[20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.:
A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space. Demonstratio Math. 51 (2018), 211–232.
DOI 10.1515/dema-2018-0015 |
MR 3856588
[21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.:
A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize. Demonstratio Math. 52 (1) (2019), 183–203.
MR 3938331
[25] Maingé, P.E.:
Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16 (2008), 899–912.
DOI 10.1007/s11228-008-0102-z |
MR 2466027
[28] Mewomo, O.T., Ogbuisi, F.U.:
Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces. Quaestiones Math. 41 (1) (2018), 129–148.
DOI 10.2989/16073606.2017.1375569 |
MR 3761493
[31] Moudafi, A., Thakur, B.S.:
Solving proximal split feasibility problems without prior knowledge of operator norms. Optim. Lett. 8 (7) (2014), 2099–2110.
DOI 10.1007/s11590-013-0708-4 |
MR 3263242
[32] Nesterov, Y.:
A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$. Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547.
MR 0701288
[33] Ogbuisi, F.U., Mewomo, O.T.:
On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm. J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128.
DOI 10.1007/s11784-016-0397-6 |
MR 3692443
[34] Ogbuisi, F.U., Mewomo, O.T.:
Iterative solution of split variational inclusion problem in a real Banach space. Afrika Mat. (3) 28 (1–2) (2017), 295–309.
DOI 10.1007/s13370-016-0450-z |
MR 3613639
[36] Okeke, C.C., Mewomo, O.T.:
On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings. Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280.
MR 3742495
[37] Parith, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization 1 (3) (2013), 123–231.
[38] Pesquet, J.-C., Putselnik, N.:
A parallel inertial proximal optimization method. Pacific J. Optim. 8 (2) (2012), 273–306.
MR 2954380
[41] Rockafellar, R.T., Wets, R.: Variational Analysis. Springer, Berlin, 1988.
[42] Shehu, Y.:
Approximation of solutions to constrained convex minimization problem in Hilbert spaces. Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1.
DOI 10.1007/s10013-014-0091-1 |
MR 3386057
[43] Stampacchia, G.:
Formes bilinearies coercitives sur les ensembles convexes. Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416.
MR 0166591
[44] Su, M., Xu, H.K.:
Remarks on the gradient-projection algorithm. J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43.
MR 2911685
[46] Takahashi, W., Wen, C.-F., Yao, J.-C.:
The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 19 (1) (2018), 407–420.
DOI 10.24193/fpt-ro.2018.1.32 |
MR 3754014
[47] Tian, M., Huang, L.H.:
A general approximation method for a kind of convex optimization problems in Hilbert spaces. J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073.
MR 3198359