Previous |  Up |  Next

Article

Title: A binary operation-based representation of a lattice (English)
Author: Yettou, Mourad
Author: Amroune, Abdelaziz
Author: Zedam, Lemnaouar
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 252-272
Summary lang: English
.
Category: math
.
Summary: In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new constructed lattices. (English)
Keyword: lattice
Keyword: binary operation
Keyword: neutral element
Keyword: lattice representation
MSC: 06B05
MSC: 06B15
idZBL: Zbl 07144937
idMR: MR4014586
DOI: 10.14736/kyb-2019-2-0252
.
Date available: 2019-09-30T14:59:39Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147836
.
Reference: [1] Ashraf, M., Ali, S., Haetinger, C.: On derivations in rings and their applications..Aligarh Bull. Math. 25 (2006), 79-107. MR 2537802
Reference: [2] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic..Springer, Berlin 2013. Zbl 1271.03001, MR 3024762
Reference: [3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners..Springer, Heidelberg 2007.
Reference: [4] Birkhoff, G.: Lattice Theory. Third edition..Amer. Math. Soc., Providence 1967. MR 0227053
Reference: [5] Blyth, T. S.: Set theory and abstract algebra..Longman, London, New York 1975. MR 0223196
Reference: [6] Cooman, G. D., Kerre, E. E.: Order norms on bounded partially ordered sets..J. Fuzzy Math. 2 (1994), 281-310. Zbl 0814.04005, MR 1280148
Reference: [7] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Second edition..Cambridge University Press, 2002. MR 1902334, 10.1017/cbo9780511809088
Reference: [8] Dummit, D. S., Foote, R. M.: Abstract Algebra. Third edition..Hoboken, Wiley 2004. MR 2286236
Reference: [9] Ferrari, L.: On derivations of lattices..Pure Math. Appl. 12 (2001), 365-382. MR 1943869
Reference: [10] Grätzer, G., Wehrung, F.: Lattice Theory: Special Topics and Applications. Volume 1..Springer International Publishing Switzerland, 2014. MR 2451139, 10.1007/978-3-319-06413-0
Reference: [11] Grätzer, G., Wehrung, F.: Lattice theory: Special Topics and Applications. Volume 2..Springer International Publishing Switzerland, 2016. MR 2451139, 10.1007/978-3-319-44236-5
Reference: [12] Halaš, R., Pócs, J.: On the clone of aggregation functions on bounded lattices..Inform. Sci. 329 (2016), 381-389. 10.1016/j.ins.2015.09.038
Reference: [13] Jwaid, T., Baets, B. De, Kalická, J., Mesiar, R.: Conic aggregation functions..Fuzzy Sets Systems 167 (2011), 3-20. MR 2765243, 10.1016/j.fss.2010.07.004
Reference: [14] Karaçal, F., glu, M. N. Kesicio\v: A t-partial order obtained from t-norms..Kybernetika 47 (2011), 300-314. MR 2828579
Reference: [15] Karaçal, F., Mesiar, R.: Aggregation functions on bounded lattices..Int. J. General Systems 46 (2017), 37-51. MR 3623328, 10.1080/03081079.2017.1291634
Reference: [16] Kolman, B., Busby, R. C., Ross, S. C.: Discrete Mathematical Structures. Fourth edition..Prentice-Hall, Inc., 2003.
Reference: [17] Komorníková, M., Mesiar, R.: Aggregation functions on bounded partially ordered sets and theirs classification..Fuzzy Sets Systems 175 (2011), 48-56. MR 2803411, 10.1016/j.fss.2011.01.015
Reference: [18] Lidl, R., Pilz, G.: Applied Abstract Algebra. Second edition..Springer-Verlag, New York, Berlin, Heidelberg 1998. MR 1485777, 10.1007/978-1-4757-2941-2
Reference: [19] Lipschutz, S.: Discrete Mathematics. Third edition..McGraw-Hill, 2007. 10.1201/b13782
Reference: [20] Martínez, R., Massó, J., Neme, A., Oviedo, J.: On the lattice structure of the set of stable matchings for a many to one model..Optimization 50 (2001), 439-457. MR 1892915, 10.1080/02331930108844574
Reference: [21] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices..Fuzzy Sets and Systems 202 (2012), 75-88. MR 2934787, 10.1016/j.fss.2012.03.002
Reference: [22] Mesiar, R., Komorníková, M.: Aggregation functions on bounded posets..35 Years of Fuzzy Set Theory, Springer, Berlin, Heidelberg 261 (2010), pp. 3-17. MR 3289892, 10.1007/978-3-642-16629-7_1
Reference: [23] Ponasse, D., Carrega, J. C.: Algèbre et tobologie boléennes..Masson, Paris 1979. MR 0532013
Reference: [24] Risma, E. P.: Binary operations and lattice structure for a model of matching with contracts..Math. Soc. Sci. 73 (2015), 6-12. MR 3294778, 10.1016/j.mathsocsci.2014.11.001
Reference: [25] Roman, S.: Lattices and Ordered Sets..Springer Science and Business Media, New York 2008. MR 2446182, 10.1007/978-0-387-78901-9
Reference: [26] Rosenfeld, A.: An Introduction to Algebraic Structures..Holden-Day, San Francisco 1968. MR 0232630
Reference: [27] Schröder, B. S.: Ordered Sets..Birkhauser, Boston 2003. MR 1944415, 10.1007/978-1-4612-0053-6
Reference: [28] Szász, G.: Translationen der verbände..Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961), 449-453. MR 0132705, 10.1007/bf01238704
Reference: [29] Szász, G.: Derivations of lattices..Acta Sci. Math. 37 (1975), 149-154. MR 0382090, 10.1016/s0020-1693(00)93924-0
Reference: [30] Xin, X. L., Li, T. Y., Lu, J. H.: On derivations of lattices..Inform. Sci. 178 (2008), 307-316. MR 2363221, 10.1016/j.ins.2007.08.018
.

Files

Files Size Format View
Kybernetika_55-2019-2_3.pdf 530.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo