Previous |  Up |  Next

Article

Title: Some methods to obtain t-norms and t-conorms on bounded lattices (English)
Author: Çaylı, Gül Deniz
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 273-294
Summary lang: English
.
Category: math
.
Summary: In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice $L$ based on a priori given t-norm acting on $ [a,1]$ and t-conorm acting on $[0,a]$ for an arbitrary element $a\in L\backslash \{0,1\}$. We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice. (English)
Keyword: bounded lattice
Keyword: t-norm
Keyword: t-conorm
Keyword: ordinal sum
MSC: 03B52
MSC: 03E72
MSC: 06B20
MSC: 94D05
MSC: 97E30
idZBL: Zbl 07144938
idMR: MR4014587
DOI: 10.14736/kyb-2019-2-0273
.
Date available: 2019-09-30T15:00:59Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147837
.
Reference: [1] Aşıcı, E., Karaçal, F.: Incomparability with respect to the triangular order..Kybernetika 52 (2016), 1, 15-27. MR 3482608, 10.14736/kyb-2016-1-0015
Reference: [2] Aşıcı, E.: On the properties of the F-partial order and the equivalence of nullnorms..Fuzzy Sets and Systems 346 (2018), 72-84. MR 3812758, 10.1016/j.fss.2017.11.008
Reference: [3] Aşıcı, E.: An extension of the ordering based on nullnorms..Kybernetika 55 (2019), 2, 217-232. 10.14736/kyb-2019-2-0217
Reference: [4] Birkhoff, G.: Lattice Theory..American Mathematical Society Colloquium Publ., Providence 1967. Zbl 0537.06001, MR 0227053, 10.1090/coll/025
Reference: [5] Butnariu, D., Klement, E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions..Kluwer Academic Publishers, Dordrecht 1993. MR 2867321, 10.1007/978-94-017-3602-2
Reference: [6] Clifford, A.: Naturally totally ordered commutative semigroups..Am. J. Math. 76 (1954), 631-646. MR 0062118, 10.2307/2372706
Reference: [7] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices..Inform. Sci. 367-368 (2016), 221-231. MR 3684677, 10.1016/j.ins.2016.05.036
Reference: [8] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices..Kybernetika 53 (2017), 3, 394-417. MR 3684677, 10.14736/kyb-2017-3-0394
Reference: [9] Çaylı, G. D.: Characterizing ordinal sum for t-norms and t-conorms on bounded lattices..In: Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing (J. Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak, eds.), vol. 641 Springer, Cham 2018, pp. 443-454. 10.1007/978-3-319-66830-7_40
Reference: [10] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices..Fuzzy Sets and Systems 332 (2018), 129-143. MR 3732255, 10.1016/j.fss.2017.07.015
Reference: [11] Çaylı, G. D.: On the structure of uninorms on bounded lattices..Fuzzy Sets and Systems 357 (2019), 2-26. MR 3913056, 10.1016/j.fss.2018.07.012
Reference: [12] Deschrijver, G., Kerre, E. E.: Uninorms in $L^{\ast }$-fuzzy set theory..Fuzzy Sets and Systems 148 (2004), 243-262. MR 2100198, 10.1016/j.fss.2003.12.006
Reference: [13] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators..In: EUFIT 96, Aachen 1996.
Reference: [14] Drossos, C. A.: Generalized t-norm structures..Fuzzy Sets Systems 104 (1999), 53-59. MR 1685809, 10.1016/s0165-0114(98)00258-9
Reference: [15] Drygaś, P.: On properties of uninorms with underlying t-norm and t-conorm given as ordinal sums..Fuzzy Sets and Systems 161 (2010), 149-157. Zbl 1191.03039, MR 2566236, 10.1016/j.fss.2009.09.017
Reference: [16] Esteva, F., Godo, L.: Monoidal t-norm based logic: towards a logic for left-continuous t-norms..Fuzzy Sets and Systems 124 (2001), 271-288. MR 1860848, 10.1016/s0165-0114(01)00098-7
Reference: [17] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices..Int. J. Intell. Systems 30 (2015), 807-817. 10.1002/int.21713
Reference: [18] Goguen, J. A.: L-fuzzy sets..J. Math. Anal. Appl. 18 (1967), 145-174. MR 0224391, 10.1016/0022-247x(67)90189-8
Reference: [19] Goguen, J. A.: The fuzzy Tychonoff theorem..J. Math. Anal. Appl. 43 (1973), 734-742. MR 0341365, 10.1016/0022-247x(73)90288-6
Reference: [20] Grabisch, M., Nguyen, H. T., Walker, E. A.: Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference..Kluwer Academic Publishers, Dordrecht 1995. MR 1472733
Reference: [21] Höhle, U.: Probabilistische Topologien..Manuscr. Math. 26 (1978), 223-245. MR 0515397, 10.1007/bf01167724
Reference: [22] Höhle, U.: Commutative, residuated SOH-monoids, Non-classical logics and their applications to fuzzy subsets..In: A handbook of the mathematical foundations of fuzzy set theory, theory and decision library series B: mathematical and statistical methods (K. Höhle, ed.), vol. 32. The Netherlands Kluwer, Dordrecht 1995. MR 1345641
Reference: [23] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Acad. Publ., Dordrecht 2000. Zbl 1087.20041, MR 1790096, 10.1007/978-94-015-9540-7
Reference: [24] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices..Fuzzy Sets and Systems 202 (2012), 75-88. MR 2934787, 10.1016/j.fss.2012.03.002
Reference: [25] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets and Systems 157 (2006), 10, 1403-1416. Zbl 1099.06004, MR 2226983, 10.1016/j.fss.2005.12.021
Reference: [26] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..North-Holland, New York 1983. Zbl 0546.60010, MR 0790314
.

Files

Files Size Format View
Kybernetika_55-2019-2_4.pdf 554.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo