Previous |  Up |  Next

Article

Title: Optimal control problem and maximum principle for fractional order cooperative systems (English)
Author: Bahaa, G. M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 337-358
Summary lang: English
.
Category: math
.
Summary: In this paper, by using the classical control theory, the optimal control problem for fractional order cooperative system governed by Schrödinger operator is considered. The fractional time derivative is considered in a Riemann-Liouville and Caputo senses. The maximum principle for this system is discussed. We first study by using the Lax-Milgram Theorem, the existence and the uniqueness of the solution of the fractional differential system in a Hilbert space. Then we show that the considered optimal control problem has a unique solution. The performance index of a (FOCP) is considered as a function of both state and control variables, and the dynamic constraints are expressed by a Partial Fractional Differential Equation (PFDE). Finally, we impose some constraints on the boundary control. Interpreting the Euler-Lagrange first order optimality condition with an adjoint problem defined by means of right fractional Caputo derivative, we obtain an optimality system for the optimal control. Some examples are analyzed in details. (English)
Keyword: fractional optimal control
Keyword: cooperative systems;
Keyword: Schrodinger operator
Keyword: maximum principle
Keyword: existence of solution
Keyword: boundary control
Keyword: optimality conditions
Keyword: fractional Caputo derivatives
Keyword: Riemann–Liouville derivatives
MSC: 26A33
MSC: 35R11
MSC: 49J15
MSC: 49J20
MSC: 49K20
MSC: 93C20
idZBL: Zbl 07144941
idMR: MR4014590
DOI: 10.14736/kyb-2019-2-0337
.
Date available: 2019-09-30T15:06:25Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147840
.
Reference: [1] Agrawal, O. P.: Formulation of Euler-Lagrange equations for fractional variational problems..Math. Anal. Appl. 272 (2002), 368-379. MR 1930721, 10.1016/S0022-247X(02)00180-4
Reference: [2] Agrawal, O P.: A general formulation and solution scheme for fractional optimal control problems..Nonlinear Dynamics 38 (2004), 323-337. MR 2112177, 10.1007/s11071-004-3764-6
Reference: [3] Agrawal, O. P., Baleanu, D. A.: Hamiltonian formulation and direct numerical scheme for fractional optimal control problems..J. Vibration Control 13 (2007), 9-10, 1269-1281. MR 2356715, 10.1177/1077546307077467
Reference: [4] Al-Refai, M., Luchko, Yu.: Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications..Fract. Calc. Appl. Anal. 17 (2014), 2, 483-498. MR 3181067, 10.2478/s13540-014-0181-5
Reference: [5] Al-Refai, M., Luchko, Yu.: Maximum principle for the multi-term time fractional diffusion equations with the Riemann-Liouville fractional derivatives..Appl. Math. Comput. 257 (2015), 40-51. MR 3320647, 10.1016/j.amc.2014.12.127
Reference: [6] Al-Refai, M., Luchko, Yu.: Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications..Analysis 36 (2016), 123-133. MR 3491861, 10.1515/anly-2015-5011
Reference: [7] Bahaa, G. M.: Fractional optimal control problem for variational inequalities with control constraints..IMA J. Math. Control Inform. 35 (2018), 1, 107-122. MR 3802084, 10.1186/s13662-016-0976-2
Reference: [8] Bahaa, G. M.: Fractional optimal control problem for differential system with control constraints..Filomat J. 30 (2016), 8, 2177-2189. MR 3583154
Reference: [9] Bahaa, G. M.: Fractional optimal control problem for differential system with control constraints with delay argument..Advances Difference Equations 2017 (2017), 69, 1-19. MR 3615527, 10.1186/s13662-017-1121-6
Reference: [10] Bahaa, G. M.: Optimal control for cooperative parabolic systems governed by Schrödinger operator with control constraints..IMA J. Math. Control Inform. 24 (2007), 1-12. MR 2310985, 10.1093/imamci/dnl001
Reference: [11] Bahaa, G. M., Hamiaz, A.: Optimality conditions for fractional differential inclusions with non-singular Mittag-Leffler Kernel..Adv. Difference Equations (2018), 257. MR 3833842
Reference: [12] Baleanu, D. A., Agrawal, O. P.: Fractional Hamilton formalism within Caputo's derivative..Czechosl. J. Phys. 56 (2006), 10/11 1087-1092. MR 2282282, 10.1007/s10582-006-0406-x
Reference: [13] Bastos, N. R. O., Mozyrska, D., Torres, D. F. M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform..Int. J. Math. Comput. 11 (2011), J11, 1-9. MR 2800417
Reference: [14] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.: Necessary optimality conditions for fractional difference problems of the calculus of variations..Discrete Cont. Dyn. Syst. 29 (2011), 2, 417-437. Zbl 1209.49020, MR 2728463, 10.3934/dcds.2011.29.417
Reference: [15] Eidelman, S. D., Kochubei, A. N.: Cauchy problem for fractional diffusion equations..J. Diff. Equat. 199(2004), 211-255. MR 2047909, 10.1016/j.jde.2003.12.002
Reference: [16] El-Sayed, A. M. A.: Fractional differential equations..Kyungpook Math. J. 28 (1988), 2, 18-22. MR 1053036
Reference: [17] Fleckinger, J.: Estimates of the number of eigenvalues for an operator of Schrödinger type..Proc. Royal Soc. Edinburg 89A (1981), 355-361. MR 0635770, 10.1017/s0308210500020357
Reference: [18] Fleckinger, J.: Method of sub-super solutions for some elliptic systems defined on $\Omega$..Preprint UMR MIP, Universite Toulouse 3 (1994).
Reference: [19] Fleckinger, J., Hernándes, J., Thélin, F. de: On maximum principle and existence of positive solutions for cooperative elliptic systems..Diff. Int. Eqns. 8 (1995), 69-85. MR 1296110
Reference: [20] Fleckinger, J., Serag, H.: Semilinear cooperative elliptic systems on $R^{n}$..Rend. di Mat. 15 (1995), VII, 89-108. MR 1330181
Reference: [21] Gastao, S. F. Frederico, Torres, D. F. M.: Fractional optimal control in the sense of Caputo and the fractional Noether's theorem..Int. Math. Forum 3 (2008), 10, 479-493. MR 2386201
Reference: [22] Kochubei, A. N.: Fractional order diffusion..Diff. Equations 26 (1990), 485-492. MR 1061448
Reference: [23] Kochubei, A. N.: General fractional calculus, evolution equations, and renewal processes..Integr. Equat. Oper. Theory 71 (2011), 583-600. MR 2854867, 10.1007/s00020-011-1918-8
Reference: [24] Kotarski, W., El-Saify, H. A., Bahaa, G. M.: Optimal control of parabolic equation with an infinite number of variables for non-standard functional and time delay..IMA J. Math. Control Inform. 19 (2002), 4, 461-476. MR 1949014, 10.1093/imamci/19.4.461
Reference: [25] Lions, J. L.: Optimal Control Of Systems Governed By Partial Differential Equations..Springer-Verlag, Band 170 (1971). MR 0271512
Reference: [26] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problem and Applications..Springer-Verlag, New York 1972. MR 0350177, 10.1007/978-3-642-65217-2
Reference: [27] Liu, Y., Rundell, W., Yamamoto, M.: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem..Fract. Calc. Appl. Anal. 19 (2016), 4, 888-906. MR 3543685, 10.1515/fca-2016-0048
Reference: [28] Liu, Z., Zeng, Sh., Bai, Y.: Maximum principles for multi-term spacetime variable order fractional diffusion equations and their applications..Fract. Calc. Appl. Anal. 19 (2016), 1, 188-211. MR 3475416, 10.1515/fca-2016-0011
Reference: [29] Luchko, Yu.: Maximum principle for the generalized time fractional diffusion equation..J. Math. Anal. Appl. 351 (2009), 218-223. MR 2472935, 10.1016/j.jmaa.2008.10.018
Reference: [30] Luchko, Yu.: Boundary value problems for the generalized time fractional diffusion equation of distributed order..Fract. Calc. Appl. Anal. 12 (2009), 409-422. MR 2598188
Reference: [31] Luchko, Yu.: Some uniqueness and existence results for the initial boundary value problems for the generalized time fractional diffusion equation..Comput. Math. Appl. 59 (2010), 1766-1772. MR 2595950, 10.1016/j.camwa.2009.08.015
Reference: [32] Luchko, Yu.: Initial boundary value problems for the generalized multiterm time fractional diffusion equation..J. Math. Anal. Appl. 374 (2011), 538-548. MR 2729240, 10.1016/j.jmaa.2010.08.048
Reference: [33] Luchko, Yu., Yamamoto, M.: General time fractional diffusion equation: Some uniqueness and existence results for the initial boundary value problems..Fract. Calc. Appl. Anal. 19 (2016), 3, 676-695. MR 3563605, 10.1515/fca-2016-0036
Reference: [34] Matychyna, I., Onyshchenkob, V.: On time-optimal control of fractional-order systems..J. Comput. Appl. Math. 339 (2018), 245-257. MR 3787691, 10.1016/j.cam.2017.10.016
Reference: [35] Mophou, G. M.: Optimal control of fractional diffusion equation..Comput. Math. Appl. 61 (2011), 68-78. MR 2739436, 10.1016/j.camwa.2010.10.030
Reference: [36] Mophou, G. M.: Optimal control of fractional diffusion equation with state constraints..Comput. Math. Appl. 62 (2011), 1413-1426. MR 2824729, 10.1016/j.camwa.2011.04.044
Reference: [37] Oldham, K. B., Spanier, J.: The Fractional Calculus..Academic Press, New York 1974. Zbl 0292.26011, MR 0361633
Reference: [38] Protter, M., Weinberger, H.: Maximum Principles in Differential Equations..Prentice Hall, Englewood Clifs, 1967. MR 0219861, 10.1007/978-1-4612-5282-5
Reference: [39] Ye, H., Liu, F., Anh, V., Turner, I.: Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations..Appl. Math. Comput. 227 (2014), 531-540. MR 3146339, 10.1016/j.amc.2013.11.015
.

Files

Files Size Format View
Kybernetika_55-2019-2_7.pdf 508.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo