Previous |  Up |  Next

Article

Title: On stability and the Łojasiewicz exponent at infinity of coercive polynomials (English)
Author: Bajbar, Tomáš
Author: Behrends, Sönke
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 359-366
Summary lang: English
.
Category: math
.
Summary: In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them. (English)
Keyword: coercivity
Keyword: stability of coercivity
Keyword: Lojasiewicz exponent at infinity
MSC: 26C05
idZBL: Zbl 07144942
idMR: MR4014591
DOI: 10.14736/kyb-2019-2-0359
.
Date available: 2019-09-30T15:07:45Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147841
.
Reference: [1] Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes..SIAM J. Optim. 25 (2015), 1542-1570. MR 3376789, 10.1137/140980624
Reference: [2] Bajbar, T., Stein, O.: Coercive polynomials: stability, order of growth, and Newton polytopes..Optimization 68 (2018), 1, 99..124. MR 3902159, 10.1080/02331934.2018.1426585
Reference: [3] Bajbar, T., Stein, O.: On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers..Math. Zeitschrift 288 (2018), 915-933. MR 3778984, 10.1007/s00209-017-1920-1
Reference: [4] Behrends, S.: Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming..PhD Thesis, Universität Göttingen 2017.
Reference: [5] Behrends, S., Hübner, R., Schöbel, A.: Norm bounds and underestimators for unconstrained polynomial integer minimization..Math. Methods Oper. Res. 87 (2018), 73-107. MR 3749410, 10.1007/s00186-017-0608-y
Reference: [6] Bivià-Ausina, C.: Injectivity of real polynomial maps and Łojasiewicz exponents at infinity..Math. Zeitschrift 257 (2007), 745-767. MR 2342551, 10.1007/s00209-007-0129-0
Reference: [7] Chadzyński, J., Krasiński, T.: A set on which the Łojasiewicz exponent at infinity is attained..Ann. Polon. Math. 67 (1997), 2, 191-19. MR 1460600, 10.4064/ap-67-2-191-197
Reference: [8] Chen, Y., Dias, L. R. G., Takeuchi, K., Tibar, M.: Invertible polynomial mappings via Newton non-degeneracy..Ann. Inst. Fourier 64 (2014), 1807-1822. MR 3330924, 10.5802/aif.2897
Reference: [9] Din, M. S. El: Computing the global optimum of a multivariate polynomial over the reals..In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78. MR 2500375, 10.1145/1390768.1390781
Reference: [10] Gorin, E. A.: Asymptotic properties of polynomials and algebraic functions of several variables..Russian Math. Surveys 16 (1961), 93-119. MR 0131418, 10.1070/rm1961v016n01abeh004100
Reference: [11] Greuet, A., Din, M. Safey El: Deciding reachability of the infimum of a multivariate polynomial..In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138. MR 2895204, 10.1145/1993886.1993910
Reference: [12] Greuet, A., Din, M. Safey El: Probabilistic algorithm for polynomial optimization over a real algebraic set..SIAM J. Optim. 24 (2014), 1313-1343. MR 3248043, 10.1137/130931308
Reference: [13] Krasiński, T.: On the Łojasiewicz exponent at infinity of polynomial mappings..Acta Math. Vietnam 32 (2007), 189-203. MR 2368007
Reference: [14] Marshall, M.: Optimization of polynomial functions..Canadian Math. Bull. 46 (2003), 575-587. MR 2011395, 10.4153/cmb-2003-054-7
Reference: [15] Marshall, M.: Positive polynomials and sums of squares..Amer. Math. Soc. (2008), 3-19. MR 2383959
Reference: [16] Némethi, A., Zaharia, A.: Milnor fibration at infinity..Indagationes Math. 3 (1992), 323-335. MR 1186741, 10.1016/0019-3577(92)90039-n
Reference: [17] Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal..Math. Programm. 106 (2006), 587-606. MR 2216797, 10.1007/s10107-005-0672-6
Reference: [18] Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares..SIAM J. Optim. 17 (2006), 920-942. MR 2257216, 10.1137/050647098
Reference: [19] Vui, H. H., Pham, T. S.: Minimizing polynomial functions..Acta Math. Vietnam. 32 (2007), 71-82. MR 2348981
Reference: [20] Vui, H. H., Pham, T. S.: Representations of positive polynomials and optimization on noncompact semialgebraic sets..SIAM J. Optim. 20 (2010), 3082-3103. MR 2735945, 10.1137/090772903
.

Files

Files Size Format View
Kybernetika_55-2019-2_8.pdf 435.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo