Previous |  Up |  Next

Article

Title: Inverse eigenvalue problem of cell matrices (English)
Author: Khim, Sreyaun
Author: Rodtes, Kijti
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1015-1027
Summary lang: English
.
Category: math
.
Summary: We consider the problem of reconstructing an $n \times n$ cell matrix $D(\vec {x})$ constructed from a vector $\vec {x} = (x_{1}, x_{2},\dots , x_{n})$ of positive real numbers, from a given set of spectral data. In addition, we show that the spectra of cell matrices $D(\vec {x})$ and $D(\pi (\vec {x}))$ are the same for every permutation $\pi \in S_{n}$. (English)
Keyword: cell matrix
Keyword: inverse eigenvalue problem
Keyword: Euclidean distance matrix
MSC: 15B05
MSC: 15B10
MSC: 15B48
MSC: 35P20
MSC: 35P30
idZBL: 07144871
idMR: MR4039616
DOI: 10.21136/CMJ.2019.0579-17
.
Date available: 2019-11-28T08:49:21Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147910
.
Reference: [1] Chu, M. T.: Inverse eigenvalue problems.SIAM Rev. 40 (1998), 1-39. Zbl 0915.15008, MR 1612561, 10.1137/S0036144596303984
Reference: [2] Chu, M. T., Golub, G. H.: Structured inverse eigenvalue problems.Acta Numerica 11 (2002), 1-71. Zbl 1105.65326, MR 2008966, 10.1017/S0962492902000016
Reference: [3] Gyamfi, K. B.: Solution of Inverse Eigenvalue Problem of Certain Singular Hermitian Matrices.Doctoral dissertation, Kwame Nkrumah University of Science and Technology (2012).
Reference: [4] Jaklič, G., Modic, J.: On properties of cell matrices.Appl. Math. Comput. 216 (2010), 2016-2023. Zbl 1203.15022, MR 2647070, 10.1016/j.amc.2010.03.032
Reference: [5] Kurata, H., Tarazaga, P.: The cell matrix closest to a given Euclidean distance matrix.Linear Algebra Appl. 485 (2015), 194-207. Zbl 1323.15020, MR 3394144, 10.1016/j.laa.2015.07.030
Reference: [6] Nazari, A. M., Mahdinasab, F.: Inverse eigenvalue problem of distance matrix via orthogonal matrix.Linear Algebra Appl. 450 (2014), 202-216. Zbl 1302.15016, MR 3192478, 10.1016/j.laa.2014.02.017
Reference: [7] Radwan, N.: An inverse eigenvalue problem for symmetric and normal matrices.Linear Algebra Appl. 248 (1996), 101-109. Zbl 0865.15008, MR 1416452, 10.1016/0024-3795(95)00162-X
Reference: [8] Schoenberg, I. J.: Metric spaces and positive definite functions.Trans. Am. Math. Soc. 44 (1938), 522-536. Zbl 0019.41502, MR 1501980, 10.1090/S0002-9947-1938-1501980-0
Reference: [9] Tarazaga, P., Kurata, H.: On cell matrices: a class of Euclidean distance matrices.Appl. Math. Comput. 238 (2014), 468-474. Zbl 1334.15090, MR 3209649, 10.1016/j.amc.2014.04.026
Reference: [10] Wang, Z., Zhong, B.: An inverse eigenvalue problem for Jacobi matrices.Math. Probl. Eng. 2011 (2011), Article ID 571781, 11 pages. Zbl 1235.15011, MR 2799869, 10.1155/2011/571781
.

Files

Files Size Format View
CzechMathJ_69-2019-4_9.pdf 294.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo