Previous |  Up |  Next

Article

Title: On representations of real analytic functions by monogenic functions (English)
Author: Yuan, Hongfen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 997-1013
Summary lang: English
.
Category: math
.
Summary: Using the method of normalized systems of functions, we study one representation of real analytic functions by monogenic functions (i.e., solutions of Dirac equations), which is an Almansi's formula of infinite order. As applications of the representation, we construct solutions of the inhomogeneous Dirac and poly-Dirac equations in Clifford \hbox {analysis}. (English)
Keyword: monogenic function
Keyword: inhomogeneous Dirac equation
Keyword: inhomogeneous poly-Dirac equation
Keyword: Almansi's formula of infinite order
Keyword: Clifford analysis
MSC: 30G35
MSC: 35C10
MSC: 35J05
idZBL: 07144870
idMR: MR4039615
DOI: 10.21136/CMJ.2019.0573-17
.
Date available: 2019-11-28T08:48:54Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147909
.
Reference: [1] Al-Yasiri, Z. R., Gürlebeck, K.: On a boundary value problem for a $p$-Dirac equation.Math. Methods Appl. Sci. 39 (2016), 4056-4068. Zbl 1357.30034, MR 3536522, 10.1002/mma.3847
Reference: [2] Aronszajn, N., Creese, T. M., Lipkin, L. J.: Polyharmonic Functions.Oxford Mathematical Monographs, Oxford University Press, Oxford (1983). Zbl 0514.31001, MR 0745128
Reference: [3] Bondarenko, B. A.: Operator Algorithms in Differential Equations.Izdatel'stvo Fan Uzbekskoj SSR, Tashkent (1984), Russian. Zbl 0551.34001, MR 0745129
Reference: [4] Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis.Research Notes in Mathematics 76, Pitman Advanced Publishing Program, Boston (1982). Zbl 0529.30001, MR 0697564
Reference: [5] Brackx, F., Schepper, H. De, Eelbode, D., Souček, V.: Explicit formulae for monogenic projections.Int. Conf. on Numerical Analysis and Applied Mathematics 2008 T. Simos et al. AIP Conference Proceedings 1048, American Institute of Physics, Melville (2008), 697-700. Zbl 1179.30051, 10.1063/1.2991024
Reference: [6] Constales, D., Grob, D., Kraußhar, R. S.: Reproducing kernel functions of solutions to polynomial Dirac equations in the annulus of the unit ball in $\mathbb R^{n}$ and applications to boundary value problems.J. Math. Anal. Appl. 358 (2009), 281-293. Zbl 1167.35326, MR 2532506, 10.1016/j.jmaa.2009.05.001
Reference: [7] Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator.Mathematics and Its Applications 53, Kluwer Academic Publishers, Dordrecht (1992). Zbl 0747.53001, MR 1169463, 10.1007/978-94-011-2922-0
Reference: [8] Howe, R.: Remarks on classical invariant theory.Trans. Am. Math. Soc. 313 (1989), 539-570. Zbl 0674.15021, MR 0986027, 10.2307/2001418
Reference: [9] Kähler, U.: Clifford analysis and the Navier-Stokes equations over unbounded domains.Adv. Appl. Clifford Algebr. 11 (2001), 305-318. Zbl 1221.35280, MR 2106727, 10.1007/BF03042225
Reference: [10] Karachik, V. V.: Polynomial solutions to systems of partial differential equations with constant coefficients.Yokohama Math. J. 47 (2000), 121-142. Zbl 0971.35014, MR 1763777
Reference: [11] Karachik, V. V.: Normalized system of functions with respect to the Laplace operator and its applications.J. Math. Anal. Appl. 287 (2003), 577-592. Zbl 1039.31009, MR 2024341, 10.1016/S0022-247X(03)00583-3
Reference: [12] Karachik, V. V.: Method of Normalized Systems of Functions.Izd. Tsentr Yuzhno-Ural'skiĭ Gosudarstvennyĭ Universitet, Chelyabinsk (2014), Russian. Zbl 1297.35005
Reference: [13] Karachik, V. V.: Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball.Differ. Equ. 51 (2015), 1033-1042 English. Russian original translation from Differ. Uravn. 51 2015 1038-1047. Zbl 1331.35118, MR 3404090, 10.1134/S0012266115080078
Reference: [14] Karachik, V. V., Turmetov, B.: Solvability of some Neumann-type boundary value problems for biharmonic equations.Electron. J. Differ. Equ. 217 (2017), Paper No. 218, 17 pages. Zbl 1371.35074, MR 3711171
Reference: [15] Ku, M., Wang, D.: Solutions to the polynomial Dirac equations on unbounded domains in Clifford analysis.Math. Methods Appl. Sci. 34 (2011), 418-427. Zbl 1218.30138, MR 2791483, 10.1002/mma.1368
Reference: [16] Ryan, J.: Cauchy-Green type formulae in Clifford analysis.Trans. Am. Math. Soc. 347 (1995), 1331-1341. Zbl 0829.30030, MR 1249888, 10.2307/2154813
Reference: [17] Sommen, F., Jancewicz, B.: Explicit solutions of the inhomogeneous Dirac equation.J. Anal. Math. 71 (1997), 59-74. Zbl 0883.30041, MR 1454243, 10.1007/BF02788022
Reference: [18] Yuan, H. F.: Dirichlet type problems for Dunkl-Poisson equations.Bound. Value Probl. 2016 (2016), Article ID 222, 16 pages. Zbl 1358.30021, MR 3589586, 10.1186/s13661-016-0730-4
Reference: [19] Yuan, H. F.: Solutions of the Poisson equation and related equations in super spinor space.Comput. Methods Funct. Theory 16 (2016), 699-715. Zbl 1366.58008, MR 3558379, 10.1007/s40315-016-0166-y
Reference: [20] Yuan, H. F., Karachik, V. V.: Dunkl-Poisson equation and related equations in superspace.Math. Model. Anal. 20 (2015), 768-781. MR 3427166, 10.3846/13926292.2015.1112856
.

Files

Files Size Format View
CzechMathJ_69-2019-4_8.pdf 310.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo