Previous |  Up |  Next

Article

Title: Certain simple maximal subfields in division rings (English)
Author: Aaghabali, Mehdi
Author: Bien, Mai Hoang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1053-1060
Summary lang: English
.
Category: math
.
Summary: Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$ (English)
Keyword: division ring
Keyword: rational identity
Keyword: maximal subfield
MSC: 16K20
MSC: 16R50
MSC: 17A35
idZBL: 07144874
idMR: MR4039619
DOI: 10.21136/CMJ.2019.0039-18
.
Date available: 2019-11-28T08:50:35Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147913
.
Reference: [1] Aaghabali, M., Akbari, S., Bien, M. H.: Division algebras with left algebraic commutators.Algebr. Represent. Theory 21 (2018), 807-816. Zbl 1397.17004, MR 3826728, 10.1007/s10468-017-9739-3
Reference: [2] Albert, A. A., Muckenhoupt, B.: On matrices of trace zeros.Mich. Math. J. 4 (1957), 1-3. Zbl 0077.24304, MR 0083961, 10.1307/mmj/1028990168
Reference: [3] Amitsur, S. A.: Rational identities and applications to algebra and geometry.J. Algebra 3 (1966), 304-359. Zbl 0203.04003, MR 0191912, 10.1016/0021-8693(66)90004-4
Reference: [4] Amitsur, S. A., Rowen, L. H.: Elements of reduced trace 0.Isr. J. Math. 87 (1994), 161-179. Zbl 0852.16012, MR 1286824, 10.1007/BF02772992
Reference: [5] Beidar, K. I., Martindale, W. S., III, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). Zbl 0847.16001, MR 1368853
Reference: [6] Chebotar, M. A., Fong, Y., Lee, P.-H.: On division rings with algebraic commutators of bounded degree.Manuscr. Math. 113 (2004), 153-164. Zbl 1054.16012, MR 2128544, 10.1007/s00229-003-0430-0
Reference: [7] Chiba, K.: Generalized rational identities of subnormal subgroups of skew fields.Proc. Am. Math. Soc. 124 (1996), 1649-1653. Zbl 0859.16014, MR 1301016, 10.1090/S0002-9939-96-03127-9
Reference: [8] Hai, B. X., Dung, T. H., Bien, M. H.: Almost subnormal subgroups in division rings with generalized algebraic rational identities.Available at https://arxiv.org/abs/1709.04774.
Reference: [9] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131, Springer, New York (2001). Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0
Reference: [10] Mahdavi-Hezavehi, M.: Extension of valuations on derived groups of division rings.Commun. Algebra 23 (1995), 913-926. Zbl 0833.16014, MR 1316740, 10.1080/00927879508825257
Reference: [11] Mahdavi-Hezavehi, M.: Commutators in division rings revisited.Bull. Iran. Math. Soc. 26 (2000), 7-88. Zbl 0983.16012, MR 1828953
Reference: [12] Mahdavi-Hezavehi, M., Akbari-Feyzaabaadi, S., Mehraabaadi, M., Hajie-Abolhassan, H.: On derived groups of division rings. II.Commun. Algebra 23 (1995), 2881-2887. Zbl 0866.16012, MR 1332151, 10.1080/00927879508825374
Reference: [13] Thompson, R. C.: Commutators in the special and general linear groups.Trans. Am. Math. Soc. 101 (1961), 16-33. Zbl 0109.26002, MR 0130917, 10.1090/S0002-9947-1961-0130917-7
.

Files

Files Size Format View
CzechMathJ_69-2019-4_12.pdf 272.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo