Title:
|
Certain simple maximal subfields in division rings (English) |
Author:
|
Aaghabali, Mehdi |
Author:
|
Bien, Mai Hoang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
1053-1060 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $D$ be a division ring finite dimensional over its center $F$. The goal of this paper is to prove that for any positive integer $n$ there exists $a\in D^{(n)},$ the $n$th multiplicative derived subgroup such that $F(a)$ is a maximal subfield of $D$. We also show that a single depth-$n$ iterated additive commutator would generate a maximal subfield of $D.$ (English) |
Keyword:
|
division ring |
Keyword:
|
rational identity |
Keyword:
|
maximal subfield |
MSC:
|
16K20 |
MSC:
|
16R50 |
MSC:
|
17A35 |
idZBL:
|
07144874 |
idMR:
|
MR4039619 |
DOI:
|
10.21136/CMJ.2019.0039-18 |
. |
Date available:
|
2019-11-28T08:50:35Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147913 |
. |
Reference:
|
[1] Aaghabali, M., Akbari, S., Bien, M. H.: Division algebras with left algebraic commutators.Algebr. Represent. Theory 21 (2018), 807-816. Zbl 1397.17004, MR 3826728, 10.1007/s10468-017-9739-3 |
Reference:
|
[2] Albert, A. A., Muckenhoupt, B.: On matrices of trace zeros.Mich. Math. J. 4 (1957), 1-3. Zbl 0077.24304, MR 0083961, 10.1307/mmj/1028990168 |
Reference:
|
[3] Amitsur, S. A.: Rational identities and applications to algebra and geometry.J. Algebra 3 (1966), 304-359. Zbl 0203.04003, MR 0191912, 10.1016/0021-8693(66)90004-4 |
Reference:
|
[4] Amitsur, S. A., Rowen, L. H.: Elements of reduced trace 0.Isr. J. Math. 87 (1994), 161-179. Zbl 0852.16012, MR 1286824, 10.1007/BF02772992 |
Reference:
|
[5] Beidar, K. I., Martindale, W. S., III, Mikhalev, A. V.: Rings with Generalized Identities.Pure and Applied Mathematics 196, Marcel Dekker, New York (1996). Zbl 0847.16001, MR 1368853 |
Reference:
|
[6] Chebotar, M. A., Fong, Y., Lee, P.-H.: On division rings with algebraic commutators of bounded degree.Manuscr. Math. 113 (2004), 153-164. Zbl 1054.16012, MR 2128544, 10.1007/s00229-003-0430-0 |
Reference:
|
[7] Chiba, K.: Generalized rational identities of subnormal subgroups of skew fields.Proc. Am. Math. Soc. 124 (1996), 1649-1653. Zbl 0859.16014, MR 1301016, 10.1090/S0002-9939-96-03127-9 |
Reference:
|
[8] Hai, B. X., Dung, T. H., Bien, M. H.: Almost subnormal subgroups in division rings with generalized algebraic rational identities.Available at https://arxiv.org/abs/1709.04774. |
Reference:
|
[9] Lam, T. Y.: A First Course in Noncommutative Rings.Graduate Texts in Mathematics 131, Springer, New York (2001). Zbl 0980.16001, MR 1838439, 10.1007/978-1-4419-8616-0 |
Reference:
|
[10] Mahdavi-Hezavehi, M.: Extension of valuations on derived groups of division rings.Commun. Algebra 23 (1995), 913-926. Zbl 0833.16014, MR 1316740, 10.1080/00927879508825257 |
Reference:
|
[11] Mahdavi-Hezavehi, M.: Commutators in division rings revisited.Bull. Iran. Math. Soc. 26 (2000), 7-88. Zbl 0983.16012, MR 1828953 |
Reference:
|
[12] Mahdavi-Hezavehi, M., Akbari-Feyzaabaadi, S., Mehraabaadi, M., Hajie-Abolhassan, H.: On derived groups of division rings. II.Commun. Algebra 23 (1995), 2881-2887. Zbl 0866.16012, MR 1332151, 10.1080/00927879508825374 |
Reference:
|
[13] Thompson, R. C.: Commutators in the special and general linear groups.Trans. Am. Math. Soc. 101 (1961), 16-33. Zbl 0109.26002, MR 0130917, 10.1090/S0002-9947-1961-0130917-7 |
. |