Title:
|
On $n$-exact categories (English) |
Author:
|
Manjra, Said |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
1089-1099 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An $n$-exact category is a pair consisting of an additive category and a class of sequences with $n+2$ terms satisfying certain axioms. We introduce $n$-weakly idempotent complete categories. Then we prove that an additive $n$-weakly idempotent complete category together with the class $\mathcal {C}_n$ of all contractible sequences with $n+2$ terms is an $n$-exact category. Some properties of the class $\mathcal {C}_n$ are also discussed. (English) |
Keyword:
|
$n$-exact category |
Keyword:
|
contractible sequence |
Keyword:
|
idempotent complete category |
MSC:
|
18E10 |
MSC:
|
18E99 |
idZBL:
|
07144878 |
idMR:
|
MR4039623 |
DOI:
|
10.21136/CMJ.2019.0067-18 |
. |
Date available:
|
2019-11-28T08:52:18Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147917 |
. |
Reference:
|
[1] Borceux, F.: Handbook of Categorical Algebra. Volume 2: Categories and Structures.Encyclopedia of Mathematics and Its Applications, 50, Cambridge University Press, Cambridge (2008). Zbl 1143.18002, MR 1313497, 10.1017/CBO9780511525865 |
Reference:
|
[2] Bühler, T.: Exact categories.Expo. Math. 28 (2010), 1-69. Zbl 1192.18007, MR 2606234, 10.1016/j.exmath.2009.04.004 |
Reference:
|
[3] Freyd, P.: Splitting homotopy idempotents.Proc. Conf. Categor. Algebra, La Jolla 1965 S. Eilenberg et al. Springer, Berlin (1966), 173-176. Zbl 0195.52902, MR 0206069, 10.1007/978-3-642-99902-4_6 |
Reference:
|
[4] Geiss, C., Keller, B., Oppermann, S.: $n$-angulated categories.J. Reine Angew. Math. 675 (2013), 101-120. Zbl 1271.18013, MR 3021448, 10.1515/crelle.2011.177 |
Reference:
|
[5] Iyama, O.: Auslander correspondence.Adv. Math. 210 (2007), 51-82. Zbl 1115.16006, MR 2298820, 10.1016/j.aim.2006.06.003 |
Reference:
|
[6] Iyama, O.: Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories.Adv. Math. 210 (2007), 22-50. Zbl 1115.16005, MR 2298819, 10.1016/j.aim.2006.06.002 |
Reference:
|
[7] Iyama, O.: Cluster tilting for higher Auslander algebras.Adv. Math. 226 (2011), 1-61. Zbl 1233.16014, MR 2735750, 10.1016/j.aim.2010.03.004 |
Reference:
|
[8] Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen-Macaulay modules.Invent. Math. 172 (2008), 117-168. Zbl 1140.18007, MR 2385669, 10.1007/s00222-007-0096-4 |
Reference:
|
[9] Jasso, G.: $n$-Abelian and $n$-exact categories.Math. Z. 283 (2016), 703-759. Zbl 1356.18005, MR 3519980, 10.1007/s00209-016-1619-8 |
Reference:
|
[10] Lin, Z.: Right $n$-angulated categories arising from covariantly finite subcategories.Commun. Algebra 45 (2017), 828-840. Zbl 1371.18010, MR 3562541, 10.1080/00927872.2016.1175591 |
Reference:
|
[11] Neeman, A.: The derived category of an exact category.J. Algebra 135 (1990), 388-394. Zbl 0753.18004, MR 1080854, 10.1016/0021-8693(90)90296-z |
Reference:
|
[12] Quillen, D.: Higher algebraic $K$-theory. I.Algebraic $K$-Theory I: Higher $K$-theories H. Bass Lecture Notes in Mathematics 341, Springer, Berlin (1973), 85-147. Zbl 0292.18004, MR 0338129, 10.1007/bfb0067053 |
Reference:
|
[13] Thomason, R. W., Trobaugh, T.: Higher algebraic $K$-theory of schemes and of derived categories.The Grothendieck Festschrift, Vol. III P. Cartier et al. Progress in Mathematics 88, Birkhäuser, Boston (1990), 247-435. Zbl 0731.14001, MR 1106918, 10.1007/978-0-8176-4576-2_10 |
. |