Title:
|
Associated primes of local cohomology modules of generalized Laskerian modules (English) |
Author:
|
Hassanzadeh-Lelekaami, Dawood |
Author:
|
Roshan-Shekalgourabi, Hajar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
1101-1109 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal I$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal I$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal I$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal I$-closed submodules of local cohomology modules. (English) |
Keyword:
|
associated prime ideals |
Keyword:
|
Grothendieck spectral sequence |
Keyword:
|
local cohomology module |
Keyword:
|
semiprime closure operation |
MSC:
|
13A15 |
MSC:
|
13D45 |
MSC:
|
13E99 |
idZBL:
|
07144879 |
idMR:
|
MR4039624 |
DOI:
|
10.21136/CMJ.2019.0077-18 |
. |
Date available:
|
2019-11-28T08:52:42Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147918 |
. |
Reference:
|
[1] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules.Proc. Am. Math. Soc. 128 (2000), 2851-2853. Zbl 0955.13007, MR 1664309, 10.1090/s0002-9939-00-05328-4 |
Reference:
|
[2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204 |
Reference:
|
[3] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules.Proc. Am. Math. Soc. 133 (2005), 655-660. Zbl 1103.13010, MR 2113911, 10.1090/s0002-9939-04-07728-7 |
Reference:
|
[4] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules.Commun. Algebra 34 (2006), 681-690. Zbl 1097.13021, MR 2211948, 10.1080/00927870500387945 |
Reference:
|
[5] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/bf01404554 |
Reference:
|
[6] Hassanzadeh-Lelekaami, D.: A closure operation on submodules.J. Algebra Appl. 16 (2017), Article ID 1750229, 22 pages. Zbl 1387.13013, MR 3725089, 10.1142/s0219498817502292 |
Reference:
|
[7] Huneke, C.: Problems on local cohomology.Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston (1992), 93-108. Zbl 0782.13015, MR 1165320 |
Reference:
|
[8] Katzman, M.: An example of an infinite set of associated primes of a local cohomology module.J. Algebra 252 (2002), 161-166. Zbl 1083.13505, MR 1922391, 10.1016/s0021-8693(02)00032-7 |
Reference:
|
[9] Khashyarmanesh, K., Salarian, Sh.: On the associated primes of local cohomology modules.Commun. Algebra 27 (1999), 6191-6198. Zbl 0940.13013, MR 1726302, 10.1080/00927879908826816 |
Reference:
|
[10] Kirby, D.: Components of ideals in a commutative ring.Ann. Mat. Pura Appl. (4) 71 (1966), 109-125. Zbl 0139.26501, MR 0210694, 10.1007/bf02413738 |
Reference:
|
[11] Rotman, J. J.: An Introduction to Homological Algebra.Universitext, Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977 |
Reference:
|
[12] Singh, A. K.: $p$-torsion elements in local cohomology modules.Math. Res. Lett. 7 (2000), 165-176. Zbl 0965.13013, MR 1764314, 10.4310/mrl.2000.v7.n2.a3 |
Reference:
|
[13] Zöschinger, H.: Minimax-Moduln.J. Algebra 102 (1986), 1-32 German. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0 |
. |