Previous |  Up |  Next

Article

Title: Associated primes of local cohomology modules of generalized Laskerian modules (English)
Author: Hassanzadeh-Lelekaami, Dawood
Author: Roshan-Shekalgourabi, Hajar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1101-1109
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal I$ be a set of ideals of a commutative Noetherian ring $R$. We use the notion of $\mathcal I$-closure operation which is a semiprime closure operation on submodules of modules to introduce the class of $\mathcal I$-Laskerian modules. This enables us to investigate the set of associated prime ideals of certain $\mathcal I$-closed submodules of local cohomology modules. (English)
Keyword: associated prime ideals
Keyword: Grothendieck spectral sequence
Keyword: local cohomology module
Keyword: semiprime closure operation
MSC: 13A15
MSC: 13D45
MSC: 13E99
idZBL: 07144879
idMR: MR4039624
DOI: 10.21136/CMJ.2019.0077-18
.
Date available: 2019-11-28T08:52:42Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147918
.
Reference: [1] Brodmann, M. P., Lashgari, F. A.: A finiteness result for associated primes of local cohomology modules.Proc. Am. Math. Soc. 128 (2000), 2851-2853. Zbl 0955.13007, MR 1664309, 10.1090/s0002-9939-00-05328-4
Reference: [2] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). Zbl 0903.13006, MR 1613627, 10.1017/CBO9780511629204
Reference: [3] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules.Proc. Am. Math. Soc. 133 (2005), 655-660. Zbl 1103.13010, MR 2113911, 10.1090/s0002-9939-04-07728-7
Reference: [4] Divaani-Aazar, K., Mafi, A.: Associated primes of local cohomology modules of weakly Laskerian modules.Commun. Algebra 34 (2006), 681-690. Zbl 1097.13021, MR 2211948, 10.1080/00927870500387945
Reference: [5] Hartshorne, R.: Affine duality and cofiniteness.Invent. Math. 9 (1970), 145-164. Zbl 0196.24301, MR 0257096, 10.1007/bf01404554
Reference: [6] Hassanzadeh-Lelekaami, D.: A closure operation on submodules.J. Algebra Appl. 16 (2017), Article ID 1750229, 22 pages. Zbl 1387.13013, MR 3725089, 10.1142/s0219498817502292
Reference: [7] Huneke, C.: Problems on local cohomology.Free Resolutions in Commutative Algebra and Algebraic Geometry Research Notes in Mathematics 2, Jones and Bartlett Publishers, Boston (1992), 93-108. Zbl 0782.13015, MR 1165320
Reference: [8] Katzman, M.: An example of an infinite set of associated primes of a local cohomology module.J. Algebra 252 (2002), 161-166. Zbl 1083.13505, MR 1922391, 10.1016/s0021-8693(02)00032-7
Reference: [9] Khashyarmanesh, K., Salarian, Sh.: On the associated primes of local cohomology modules.Commun. Algebra 27 (1999), 6191-6198. Zbl 0940.13013, MR 1726302, 10.1080/00927879908826816
Reference: [10] Kirby, D.: Components of ideals in a commutative ring.Ann. Mat. Pura Appl. (4) 71 (1966), 109-125. Zbl 0139.26501, MR 0210694, 10.1007/bf02413738
Reference: [11] Rotman, J. J.: An Introduction to Homological Algebra.Universitext, Springer, New York (2009). Zbl 1157.18001, MR 2455920, 10.1007/b98977
Reference: [12] Singh, A. K.: $p$-torsion elements in local cohomology modules.Math. Res. Lett. 7 (2000), 165-176. Zbl 0965.13013, MR 1764314, 10.4310/mrl.2000.v7.n2.a3
Reference: [13] Zöschinger, H.: Minimax-Moduln.J. Algebra 102 (1986), 1-32 German. Zbl 0593.13012, MR 0853228, 10.1016/0021-8693(86)90125-0
.

Files

Files Size Format View
CzechMathJ_69-2019-4_17.pdf 285.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo