Previous |  Up |  Next

Article

Title: On a sequence formed by iterating a divisor operator (English)
Author: Djamel, Bellaouar
Author: Abdelmadjid, Boudaoud
Author: Özer, Özen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1177-1196
Summary lang: English
.
Category: math
.
Summary: Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence $$ \underbrace {d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text {-times}} =\begin {cases} d^{s}( n) & \text {for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) &\text {for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) & \text {for} \ m=3, \\ \vdots & \end {cases} $$ We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\geq 1}$, where $\ell $, $n$, $s$ are understood as parameters. (English)
Keyword: divisor function
Keyword: prime number
Keyword: iterated sequence
Keyword: internal set theory
MSC: 03H05
MSC: 11A25
MSC: 11A41
idZBL: 07144884
idMR: MR4039629
DOI: 10.21136/CMJ.2019.0133-18
.
Date available: 2019-11-28T08:55:06Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147923
.
Reference: [1] Bellaouar, D.: Notes on certain arithmetic inequalities involving two consecutive primes.Malays. J. Math. Sci. 10 (2016), 253-268. MR 3583217
Reference: [2] Bellaouar, D., Boudaoud, A.: Non-classical study on the simultaneous rational approximation.Malays. J. Math. Sci. 9 (2015), 209-225. MR 3350181
Reference: [3] Boudaoud, A.: La conjecture de Dickson et classes particulière d'entiers.Ann. Math. Blaise Pascal 13 (2006), 103-109 French. Zbl 1172.11307, MR 2233013, /10.5802/ambp.215
Reference: [4] Boudaoud, A.: Decomposition of terms in Lucas sequences.J. Log. Anal. 1 (2009), Article 4, 23 pages. Zbl 1177.11015, MR 2501375, 10.4115/jla.2009.1.4
Reference: [5] Koninck, J.-M. De, Mercier, A.: 1001 problems in classical number theory.Ellipses, Paris (2004), French. Zbl 1109.11001, MR 2302879
Reference: [6] Diener, F., (eds.), M. Diener: Nonstandard Analysis in Practice.Universitext, Springer, Berlin (1995). Zbl 0848.26015, MR 1396794, 10.1007/978-3-642-57758-1
Reference: [7] Diener, F., Reeb, G.: Analyse Non Standard.Enseignement des Sciences 40, Hermann, Paris (1989), French. Zbl 0682.26010, MR 1026099
Reference: [8] Erdős, P., Kátai, I.: On the growth of $ d_{k}( n) $.Fibonacci Q. 7 (1969), 267-274. Zbl 0188.34102, MR 0252338
Reference: [9] Jin, R.: Inverse problem for upper asymptotic density.Trans. Am. Math. Soc. 355 (2003), 57-78. Zbl 1077.11007, MR 1928077, 10.1090/s0002-9947-02-03122-7
Reference: [10] Kanovei, V., Reeken, M.: Nonstandard Analysis, Axiomatically.Springer Monographs in Mathematics, Springer, Berlin (2004). Zbl 1058.03002, MR 2093998, 10.1007/978-3-662-08998-9
Reference: [11] Nathanson, M. B.: Elementary Methods in Number Theory.Graduate Texts in Mathematics 195, Springer, New York (2000). Zbl 0953.11002, MR 1732941, 10.1007/b98870
Reference: [12] Nelson, E.: Internal set theory: A new approach to nonstandard analysis.Bull. Am. Math. Soc. 83 (1977), 1165-1198. Zbl 0373.02040, MR 0469763, 10.1090/s0002-9904-1977-14398-x
Reference: [13] Ramanujan, S.: Highly composite numbers.Lond. M. S. Proc. (2) 14 (1915), 347-409 \99999JFM99999 45.1248.01. MR 2280858, 10.1112/plms/s2_14.1.347
Reference: [14] Robinson, A.: Non-standard Analysis.Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1974). Zbl 0843.26012, MR 1373196
Reference: [15] Berg, I. P. Van den: Extended use of IST.Ann. Pure Appl. Logic 58 (1992), 73-92. Zbl 0777.03019, MR 1169787, 10.1016/0168-0072(92)90035-x
Reference: [16] Berg, I. P. Van den, (eds.), V. Neves: The Strength of Nonstandard Analysis.Springer, Wien (2007). Zbl 1117.03074, MR 2348897, 10.1007/978-3-211-49905-4
Reference: [17] Wells, D.: Prime Numbers: The Most Mysterious Figures in Math.Wiley, Hoboken (2005).
Reference: [18] Yan, S. Y.: Number Theory for Computing.Springer, Berlin (2002). Zbl 1010.11001, MR 2056446, 10.1007/978-3-662-04773-6
.

Files

Files Size Format View
CzechMathJ_69-2019-4_22.pdf 350.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo