Previous |  Up |  Next

Article

Keywords:
divisor function; prime number; iterated sequence; internal set theory
Summary:
Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence $$ \underbrace {d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text {-times}} =\begin {cases} d^{s}( n) & \text {for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) &\text {for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) & \text {for} \ m=3, \\ \vdots & \end {cases} $$ We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\geq 1}$, where $\ell $, $n$, $s$ are understood as parameters.
References:
[1] Bellaouar, D.: Notes on certain arithmetic inequalities involving two consecutive primes. Malays. J. Math. Sci. 10 (2016), 253-268. MR 3583217
[2] Bellaouar, D., Boudaoud, A.: Non-classical study on the simultaneous rational approximation. Malays. J. Math. Sci. 9 (2015), 209-225. MR 3350181
[3] Boudaoud, A.: La conjecture de Dickson et classes particulière d'entiers. Ann. Math. Blaise Pascal 13 (2006), 103-109 French. DOI /10.5802/ambp.215 | MR 2233013 | Zbl 1172.11307
[4] Boudaoud, A.: Decomposition of terms in Lucas sequences. J. Log. Anal. 1 (2009), Article 4, 23 pages. DOI 10.4115/jla.2009.1.4 | MR 2501375 | Zbl 1177.11015
[5] Koninck, J.-M. De, Mercier, A.: 1001 problems in classical number theory. Ellipses, Paris (2004), French. MR 2302879 | Zbl 1109.11001
[6] Diener, F., (eds.), M. Diener: Nonstandard Analysis in Practice. Universitext, Springer, Berlin (1995). DOI 10.1007/978-3-642-57758-1 | MR 1396794 | Zbl 0848.26015
[7] Diener, F., Reeb, G.: Analyse Non Standard. Enseignement des Sciences 40, Hermann, Paris (1989), French. MR 1026099 | Zbl 0682.26010
[8] Erdős, P., Kátai, I.: On the growth of $ d_{k}( n) $. Fibonacci Q. 7 (1969), 267-274. MR 0252338 | Zbl 0188.34102
[9] Jin, R.: Inverse problem for upper asymptotic density. Trans. Am. Math. Soc. 355 (2003), 57-78. DOI 10.1090/s0002-9947-02-03122-7 | MR 1928077 | Zbl 1077.11007
[10] Kanovei, V., Reeken, M.: Nonstandard Analysis, Axiomatically. Springer Monographs in Mathematics, Springer, Berlin (2004). DOI 10.1007/978-3-662-08998-9 | MR 2093998 | Zbl 1058.03002
[11] Nathanson, M. B.: Elementary Methods in Number Theory. Graduate Texts in Mathematics 195, Springer, New York (2000). DOI 10.1007/b98870 | MR 1732941 | Zbl 0953.11002
[12] Nelson, E.: Internal set theory: A new approach to nonstandard analysis. Bull. Am. Math. Soc. 83 (1977), 1165-1198. DOI 10.1090/s0002-9904-1977-14398-x | MR 0469763 | Zbl 0373.02040
[13] Ramanujan, S.: Highly composite numbers. Lond. M. S. Proc. (2) 14 (1915), 347-409 \99999JFM99999 45.1248.01. DOI 10.1112/plms/s2_14.1.347 | MR 2280858
[14] Robinson, A.: Non-standard Analysis. Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1974). MR 1373196 | Zbl 0843.26012
[15] Berg, I. P. Van den: Extended use of IST. Ann. Pure Appl. Logic 58 (1992), 73-92. DOI 10.1016/0168-0072(92)90035-x | MR 1169787 | Zbl 0777.03019
[16] Berg, I. P. Van den, (eds.), V. Neves: The Strength of Nonstandard Analysis. Springer, Wien (2007). DOI 10.1007/978-3-211-49905-4 | MR 2348897 | Zbl 1117.03074
[17] Wells, D.: Prime Numbers: The Most Mysterious Figures in Math. Wiley, Hoboken (2005).
[18] Yan, S. Y.: Number Theory for Computing. Springer, Berlin (2002). DOI 10.1007/978-3-662-04773-6 | MR 2056446 | Zbl 1010.11001
Partner of
EuDML logo