Previous |  Up |  Next

Article

Title: On Kurzweil-Stieltjes equiintegrability and generalized BV functions (English)
Author: Monteiro, Giselle A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 4
Year: 2019
Pages: 423-436
Summary lang: English
.
Category: math
.
Summary: We present sufficient conditions ensuring Kurzweil-Stieltjes equiintegrability in the case when integrators belong to the class of functions of generalized bounded variation. (English)
Keyword: Kurzweil-Stieltjes integral
Keyword: generalized bounded variation
Keyword: variational measure
Keyword: Stieltjes derivative
MSC: 26A24
MSC: 26A39
MSC: 26A42
MSC: 26A45
idZBL: 07217263
idMR: MR4047345
DOI: 10.21136/MB.2019.0041-19
.
Date available: 2019-12-09T11:54:13Z
Last updated: 2020-08-14
Stable URL: http://hdl.handle.net/10338.dmlcz/147936
.
Reference: [1] Bongiorno, B., Piazza, L. Di: Convergence theorems for generalized Riemann-Stieltjes integrals.Real Anal. Exch. 17 (1991-92), 339-361. Zbl 0758.26006, MR 1147373, 10.2307/44152212
Reference: [2] Bongiorno, B., Piazza, L. Di, Skvortsov, V.: A new full descriptive characterization of \hbox{Denjoy-Perron} integral.Real Anal. Exch. 21 (1995-96), 656-663. Zbl 0879.26026, MR 1407278, 10.2307/44152676
Reference: [3] Faure, C.-A.: A descriptive definition of the KH-Stieltjes integral.Real Anal. Exch. 23 (1998-99), 113-124. Zbl 0944.26014, MR 1609775, 10.2307/44152834
Reference: [4] Fraňková, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. Zbl 0724.26009, MR 1100424
Reference: [5] Frigon, M., Pouso, R. L.: Theory and applications of first-order systems of Stieltjes differential equations.Adv. Nonlinear Anal. 6 (2017), 13-36. Zbl 1361.34010, MR 3604936, 10.1515/anona-2015-0158
Reference: [6] Gordon, R. A.: Another look at a convergence theorem for the Henstock integral.Real Anal. Exch. 15 (1989-90), 724-728. Zbl 0708.26005, MR 1059433, 10.2307/44152048
Reference: [7] Gordon, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Graduate Studies in Mathematics 4. AMS, Providence (1994). Zbl 0807.26004, MR 1288751, 10.1090/gsm/004
Reference: [8] Hoffmann, H.: Descriptive Characterisation of the Variational Henstock-Kurzweil-Stieltjes Integral and Applications.PhD thesis. Karlsruher Institue of Technology, Karlsruhe. Available at https://publikationen.bibliothek.kit.edu/1000046600 (2014).
Reference: [9] Kurzweil, J., Jarník, J.: Equiintegrability and controlled convergence of Perron-type integrable functions.Real Anal. Exch. 17 (1991-92), 110-139. Zbl 0754.26003, MR 1147361, 10.2307/44152200
Reference: [10] Lee, P. Y.: Lanzhou Lectures on Henstock Integration.Series in Real Analysis 2. World Scientific, London (1989). Zbl 0699.26004, MR 1050957, 10.1142/0845
Reference: [11] Monteiro, G. A., Satco, B.: Distributional, differential and integral problems: equivalence and existence results.Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Paper No. 7, 26 pages. Zbl 06931238, MR 3606985, 10.14232/ejqtde.2017.1.7
Reference: [12] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2019). Zbl 06758513, MR 3839599, 10.1142/9432
Reference: [13] Pouso, R. L., Rodríguez, A.: A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives.Real Anal. Exch. 40 (2015), 319-354. Zbl 1384.26024, MR 3499768, 10.14321/realanalexch.40.2.0319
Reference: [14] Saks, S.: Theory of the Integral. With two additional notes by Stefan Banach.Monografie Matematyczne Tom. 7. G. E. Stechert & Co., New York (1937). Zbl 0017.30004, MR 0167578
Reference: [15] Satco, B.-R.: Measure integral inclusions with fast oscillating data.Electron. J. Differ. Equ. 2015 (2015), Paper No. 107, 13 pages. Zbl 1314.45005, MR 3358479
Reference: [16] Schwabik, Š.: Variational measures and the Kurzweil-Henstock integral.Math. Slovaca 59 (2009), 731-752. Zbl 1212.26014, MR 2564330, 10.2478/s12175-009-0160-1
Reference: [17] Schwabik, Š.: General integration and extensions I.Czech. Math. J. 60 (2010), 961-981. Zbl 1224.26030, MR 2738960, 10.1007/s10587-010-0087-2
Reference: [18] Schwabik, Š.: General integration and extensions II.Czech. Math. J. 60 (2010), 983-1005. Zbl 1224.26031, MR 2738961, 10.1007/s10587-010-0088-1
Reference: [19] Schwabik, Š., Vrkoč, I.: On Kurzweil-Henstock equiintegrable sequences.Math. Bohem. 121 (1996), 189-207. Zbl 0863.26009, MR 1400612, 10.21136/MB.1996.126102
Reference: [20] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.Series in Real Analysis 10. World Scientific, Hackensack (2005). Zbl 1088.28008, MR 2167754, 10.1142/5905
Reference: [21] Thomson, B. S.: Real Functions.Lecture Notes in Mathematics 1170. Springer, Berlin (1985). Zbl 0581.26001, MR 0818744, 10.1007/BFb0074380
Reference: [22] Ward, A. J.: The Perron-Stieltjes integral.Math. Z. 41 (1936), 578-604. Zbl 0014.39702, MR 1545641, 10.1007/BF01180442
.

Files

Files Size Format View
MathBohem_144-2019-4_6.pdf 318.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo