Previous |  Up |  Next

Article

Title: New results on stability of periodic solution for CNNs with proportional delays and $D$ operator (English)
Author: Du, Bo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 852-869
Summary lang: English
.
Category: math
.
Summary: The problems related to periodic solutions of cellular neural networks (CNNs) involving $D$ operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system. (English)
Keyword: periodic solution
Keyword: $D$ operator
Keyword: existence
Keyword: stability
MSC: 34D05
MSC: 34D20
idZBL: Zbl 07177920
idMR: MR4055580
DOI: 10.14736/kyb-2019-5-0852
.
Date available: 2020-01-06T11:22:21Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147955
.
Reference: [1] Aouiti, C., all., I. B. Gharbia at: Dynamics of impulsive neutral-type BAM neural networks..J. Franklin Inst. 356 (2019), 2294-2324. MR 3925987, 10.1016/j.jfranklin.2019.01.028
Reference: [2] Arik, S.: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays..J. Franklin Inst. 356 (2019), 276-291. MR 3906098, 10.1016/j.jfranklin.2018.11.002
Reference: [3] Askari, E., Setarehdan, S., Mohammadi, A. Sheikhani A. M., Teshnehlab, H.: Designing a model to detect the brain connections abnormalities in children with autism using 3D-cellular neural networks..J. Integr. Neurosci. 17 (2018), 391-411. 10.3233/jin-180075
Reference: [4] Barbalat, I.: Systems d'equations differential d'oscillationsn onlinearities..Rev. Rounmaine Math. Pure Appl. 4 (1959), 267-270. MR 0111896
Reference: [5] Cheng, Z., Li, F.: Positive periodic solutions for a kind of second-order neutral differential equations with variable coefficient and delay..Mediterr. J. Math. 15 (2018), 134-153. MR 3808561, 10.1007/s00009-018-1184-y
Reference: [6] Chua, L., Yang, L.: Cellular neural networks: application..IEEE. Trans. Circuits Syst. 35 (1988), 1273-1290. MR 0960778, 10.1109/31.7601
Reference: [7] Dharani, S., Rakkiyappan, R., Cao, J.: New delay-dependent stability criteria for switched hopfield neural networks of neutral type with additive time-varying delay components..Neurocomputing 151 (2015), 827-834. 10.1016/j.neucom.2014.10.014
Reference: [8] Ding, H., Liang, J., Xiao, T.: Existence of almost periodic solutions for SICNNs with time-varying delays..Physics Lett. A 372 (2008), 5411-5416. MR 2438234, 10.1016/j.physleta.2008.06.042
Reference: [9] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations..Springer, Berlin 1977. MR 0637067, 10.1007/bfb0089538
Reference: [10] Gang, Y.: New results on the stability of fuzzy cellular neural networks with time-varying leakage delays..Neural Computing Appl. 25 (2014), 1709-1715. MR 2907168, 10.1007/s00521-014-1662-5
Reference: [11] Guan, K.: Global power-rate synchronization of chaotic neural networks with proportional delay via impulsive control..Neurocomputing 283 (2018), 256-265. 10.1016/j.neucom.2018.01.027
Reference: [12] Guo, R., Ge, W., all., Z. Zhang at: Finite time state estimation of complex-valued BAM neutral-type neural networks with time-varying delays..Int. J. Control, Automat. Systems 17 (2019), 3, 801-809. 10.1007/s12555-018-0542-7
Reference: [13] Huang, Z.: Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays..Int. J. Machine Learning Cybernet. 8 (2017), 1323-1331. 10.1007/s13042-016-0507-1
Reference: [14] Li, Y., Li, B., Yao, S., Xiong, L.: The global exponential pseudo almost periodic synchronization of quaternion-valued cellular neural networks with time-varying delay..Neurocomputing 303 (2018), 75-87. 10.1016/j.neucom.2018.04.044
Reference: [15] Li, X., Huang, L., Zhou, H.: Global stability of cellular neural networks with constant and variable delays..Nonlinear Anal. TMA 53 (2003), 319-333. MR 1964329, 10.1016/s0362-546x(02)00176-1
Reference: [16] Liu, B.: Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays..Math. Methods App. Sci. 40 (2017), 167-174. MR 3583044, 10.1002/mma.3976
Reference: [17] Manivannan, R., Samidurai, R., Cao, J., Alsaedi, A.: New delay-interval-dependent stability criteria for switched hopfield neural networks of neutral type with successive time-varying delay components..Cognit. Neurodyn. 10 (2016), 6, 543-562. 10.1007/s11571-016-9396-y
Reference: [18] Ozcan, N.: Stability analysis of Cohen-Grossberg neural networks of neutral-type: Multiple delays case..Neural Networks 113 (2019), 20-27. 10.1016/j.neunet.2019.01.017
Reference: [19] Rakkiyappan, R., Balasubramaniam, P.: New global exponential stability results for neutral type neural networks with distributed time delays..Neurocomputing 71 (2008), 1039-1045. MR 2458370, 10.1016/j.neucom.2007.11.002
Reference: [20] Samidurai, R., Rajavel, S., Sriraman, R., Cao, J., Alsaedi, A., Alsaadi, F. E.: Novel results on stability analysis of neutral-type neural networks with additive time-varying delay components and leakage delay..Int. J. Control Automat. Syst. 15 (2017), 4, 1888-1900. 10.1007/s12555-016-9483-1
Reference: [21] all., R. Saml et: Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type..Neural Networks 116 (2019), 198-207. 10.1016/j.neunet.2019.04.023
Reference: [22] Shi, K., Zhu, H., Zhong, S., Zeng, Y., Zhang, Y.: New stability analysis for neutral type neural networks with discrete and distributed delays using a multiple integral approach..J. Frankl. Inst. 352 (2015), 1, 155-176. MR 3292322, 10.1016/j.jfranklin.2014.10.005
Reference: [23] Singh, V.: Improved global robust stability criterion for delayed neural networks..Chao. Solit. Fract. 31 (2007), 224-229. MR 2263282, 10.1016/j.chaos.2005.09.050
Reference: [24] Singh, V.: On global robust stability of interval Hopfield neural networks with delay..Chao. Solit. Fract. 33 (2007), 1183-1188. MR 2318906, 10.1016/j.chaos.2006.01.121
Reference: [25] Xiao, S.: Global exponential convergence of HCNNs with neutral type proportional delays and D operator..Neural Process. Lett. 49 (2019), 347-356. 10.1007/s11063-018-9817-5
Reference: [26] Xin, Y., Cheng, Z. B.: Neutral operator with variable parameter and third-order neutral differential equation..Adv. Diff. Equ. 273 (2014), 1-18. MR 3359150, 10.1186/1687-1847-2014-273
Reference: [27] Yao, L.: Global convergence of CNNs with neutral type delays and D operator..Neural Comput. Appl. 29 (2018), 105-109. 10.1007/s00521-016-2403-8
Reference: [28] Yu, Y.: Global exponential convergence for a class of neutral functional differential equations with proportional delays..Math. Methods Appl. Sci. 39 (2016), 4520-4525. MR 3549409, 10.1002/mma.3880
Reference: [29] Yu, Y.: Global exponential convergence for a class of HCNNs with neutral time-proportional delays..Appl. Math. Comput. 285 (2016), 1-7. MR 3494408, 10.1016/j.amc.2016.03.018
Reference: [30] Zhang, X., Han, Q.: Global asymptotic stability analysis for delayed neural networks using a matrix-based quadratic convex approach..Neural Networks 54 (2014), 57-69. 10.1016/j.neunet.2014.02.012
Reference: [31] Zhang, X., Han, Q.: Neuronal state estimation for neural networks with two additive time-varying delay components..IEEE Trans. Cybernetics 47 (2017), 3184-3194. 10.1109/tcyb.2017.2690676
Reference: [32] Zhang, X., Han, Q., Wang, L.: Admissible delay upper bounds for global asymptotic stability of neural networks with time-varying delays..IEEE Trans. Neural Networks Learning Systems 29 (2018), 5319-5329. MR 3867847, 10.1109/tnnls.2018.2797279
Reference: [33] Zhang, X., Han, Q., Zeng, Z.: Hierarchical type stability criteria for delayed neural networks via canonical Bessel-Legendre inequalities..IEEE Trans. Cybernetics 48 (2018), 1660-1671. 10.1109/tcyb.2017.2776283
Reference: [34] Zhang, H., all., T. Ma et: Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control..IEEE Trans. Systems Man Cybernet. 40 (2010), 831-844. MR 2904149, 10.1109/tsmcb.2009.2030506
Reference: [35] Zhang, H., Qiu, Z., Xiong, L.: Stochastic stability criterion of neutral-type neural networks with additive time-varying delay and uncertain semi-Markov jump..Neurocomputing 333 (2019), 395-406. 10.1016/j.neucom.2018.12.028
Reference: [36] Zheng, M., all., L. Li et: Finite-time stability and synchronization of memristor-based fractional-order fuzzy cellular neural networks..Comm. Nonlinear Sci. Numer. Simul. 59 (2018), 272-291. MR 3758388, 10.1016/j.cnsns.2017.11.025
Reference: [37] Zhou, Q.: Weighted pseudo anti-periodic solutions for cellular neural networks with mixed delays..Asian J. Control 19 (2017), 1557-1563. MR 3685941, 10.1002/asjc.1468
Reference: [38] Zhou, Q., Shao, J.: Weighted pseudo-anti-periodic SICNNs with mixed delays..Neural Computing Appl. 29 (2018), 272-291. 10.1007/s00521-016-2582-3
.

Files

Files Size Format View
Kybernetika_55-2019-5_6.pdf 500.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo