Previous |  Up |  Next

Article

Title: A note on how Rényi entropy can create a spectrum of probabilistic merging operators (English)
Author: Adamčík, Martin
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 605-617
Summary lang: English
.
Category: math
.
Summary: In this paper we present a result that relates merging of closed convex sets of discrete probability functions respectively by the squared Euclidean distance and the Kullback-Leibler divergence, using an inspiration from the Rényi entropy. While selecting the probability function with the highest Shannon entropy appears to be a convincingly justified way of representing a closed convex set of probability functions, the discussion on how to represent several closed convex sets of probability functions is still ongoing. The presented result provides a perspective on this discussion. Furthermore, for those who prefer the standard minimisation based on the squared Euclidean distance, it provides a connection to a probabilistic merging operator based on the Kullback-Leibler divergence, which is closely connected to the Shannon entropy. (English)
Keyword: probabilistic merging
Keyword: information geometry
Keyword: Kullback–Leibler divergence
Keyword: Rényi entropy
MSC: 52A99
MSC: 52C99
idZBL: Zbl 07177906
idMR: MR4043538
DOI: 10.14736/kyb-2019-4-0605
.
Date available: 2020-01-10T14:20:58Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147959
.
Reference: [1] Adamčík, M.: The information geometry of Bregman divergences and some applications in multi-expert reasoning..Entropy 16 (2014), 6338-6381. MR 3299534, 10.3390/e16126338
Reference: [2] Adamčík, M.: Collective Reasoning under Uncertainty and Inconsistency..
Reference: [3] Adamčík, M.: On the applicability of the ‘number of possible states’ argument in multi-expert reasoning..J. Appl. Logic 19 (2016), 20-49. MR 3573263, 10.1016/j.jal.2016.10.001
Reference: [4] Adamčík, M.: A logician's approach to meta-analysis with unexplained heterogeneity..J. Biomed. Inform. 71 (2017), 110-129. 10.1016/j.jbi.2017.05.017
Reference: [5] Adamčík, M., Wilmers, G. M.: Probabilistic merging operators..Logique Analyse 228 (2014), 563-590. MR 3379218, 10.2143/LEA.228.0.3078175
Reference: [6] Amari, S., Cichocki, A.: Families of Alpha- Beta- and Gamma- divergences: Flexible and robust measures of similarities..Entropy 12 (2010), 1532-1568. MR 2659408, 10.3390/e12061532
Reference: [7] Basu, A., Harris, I. R., Hjort, N., Jones, M.: Robust and efficient estimation by minimising a density power divergence..Biometrika 85 (1998), 549-559. MR 1665873, 10.1093/biomet/85.3.549
Reference: [8] Bregman, L. M.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming..USSR Comput. Mathematics Math. Physics 1 (1967), 200-217. MR 0215617, 10.1016/0041-5553(67)90040-7
Reference: [9] Hawes, P.: Investigation of Properties of Some Inference Processes..
Reference: [10] Jaynes, E. T.: Where do we stand on maximum entropy?.In: The Maximum Entropy Formalism (R. D. Levine, M. Tribus, eds.), M.I.T. Press, 1979, pp. 15-118. MR 0521743
Reference: [11] Kern-Isberner, G., Rödder, W.: Belief revision and information fusion on optimum entropy..Int. J. Intell. Systems 19 (2004), 837-857. Zbl 1101.68944, 10.1002/int.20027
Reference: [12] Osherson, D., Vardi, M.: Aggregating disparate estimates of chance..Games Econom. Behavior 56 (2006), 148-173. Zbl 1127.62129, MR 2235941, 10.1016/j.geb.2006.04.001
Reference: [13] Paris, J. B.: The Uncertain Reasoner Companion..Cambridge University Press, Cambridge 1994. MR 1314199
Reference: [14] Paris, J. B., Vencovská, A.: On the applicability of maximum entropy to inexact reasoning..Int. J. Approx. Reason. 3 (1989), 1-34. Zbl 0665.68079, MR 0975613, 10.1016/0888-613x(89)90012-1
Reference: [15] Paris, J. B., Vencovská, A.: A note on the inevitability of maximum entropy..Int. J. Approx. Reason. 4 (1990), 183-224. MR 1051032, 10.1016/0888-613x(90)90020-3
Reference: [16] Predd, J. B., Osherson, D. N., Kulkarni, S. R, Poor, H. V.: Aggregating probabilistic forecasts from incoherent and abstaining experts..Decision Analysis 5 (2008), 177-189. 10.1287/deca.1080.0119
Reference: [17] Rényi, A.: On measures of entropy and information..In: Proc. Fourth Berkeley Symposium on Mathematics, Statistics and Probability 1 (1961), 547-561. Zbl 0106.33001, MR 0132570
Reference: [18] Shannon, C. E.: A mathematical theory of communication..Bell System Techn. J. 27 (1948), 379-423, 623-656. Zbl 1154.94303, MR 0026286, 10.1002/j.1538-7305.1948.tb00917.x
Reference: [19] Wilmers, G. M.: A foundational approach to generalising the maximum entropy inference process to the multi-agent context..Entropy 17 (2015), 594-645. MR 3315866, 10.3390/e17020594
.

Files

Files Size Format View
Kybernetika_55-2019-4_1.pdf 532.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo