Previous |  Up |  Next

Article

Title: An alternating minimization algorithm for Factor Analysis (English)
Author: Ciccone, Valentina
Author: Ferrante, Augusto
Author: Zorzi, Mattia
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 740-754
Summary lang: English
.
Category: math
.
Summary: The problem of decomposing a given covariance matrix as the sum of a positive semi-definite matrix of given rank and a positive semi-definite diagonal matrix, is considered. We present a projection-type algorithm to address this problem. This algorithm appears to perform extremely well and is extremely fast even when the given covariance matrix has a very large dimension. The effectiveness of the algorithm is assessed through simulation studies and by applications to three real benchmark datasets that are considered. A local convergence analysis of the algorithm is also presented. (English)
Keyword: matrix decomposition
Keyword: factor analysis
Keyword: covariance matrices
Keyword: low rank matrices
Keyword: projections
MSC: 62H25
idZBL: Zbl 07177914
idMR: MR4043546
DOI: 10.14736/kyb-2019-4-0740
.
Date available: 2020-01-10T14:23:14Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147967
.
Reference: [1] Agarwal, A., Negahban, S., Wainwright, M. J.: Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions..Ann. Statist. 40 (2012), 2, 1171-1197. MR 2985947, 10.1214/12-aos1000
Reference: [2] Bai, J., Li, K., al., et: Statistical analysis of factor models of high dimension..Ann. Statist. 40 (2012), 1, 436-465. MR 3014313, 10.1214/11-AOS966
Reference: [3] Bai, J., Ng, S.: Determining the number of factors in approximate factor models..Econometrica 70 (2002), 1, 191-221. MR 1926259, 10.1111/1468-0262.00273
Reference: [4] Bai, J., Ng, S.: Large dimensional factor analysis..Found. Trends Econometr. 3 (2008), 2, 89-163. 10.1561/0800000002
Reference: [5] Bertsimas, D., Copenhaver, M. S., Mazumder, R.: Certifiably optimal low rank factor analysis..J. Machine Learning Res. 18 (2017), 29, 1-53. MR 3634896
Reference: [6] Ciccone, V., Ferrante, A., Zorzi, M.: Factor analysis with finite data..In: Proc. 56th Annual Conference on Decision and Control (CDC), VIC, Melbourne 2017, pp. 4046-4051. 10.1109/cdc.2017.8264253
Reference: [7] Ciccone, V., Ferrante, A., Zorzi, M.: Robust identification of "Sparse Plus Low-rank" graphical models: An optimization approach..In: Proc. 2018 IEEE Conference on Decision and Control (CDC), Miami Beach 2018, pp. 2241-2246. 10.1109/cdc.2018.8619796
Reference: [8] Ciccone, V., Ferrante, A., Zorzi, M.: Factor models with real data: A robust estimation of the number of factors..IEEE Trans. Automat. Control 64 (2019), 6, 2412-2425. MR 3960088, 10.1109/tac.2018.2867372
Reference: [9] Deistler, M., Zinner, C.: Modelling high-dimensional time series by generalized linear dynamic factor models: An introductory survey..Comm. Inform. Systems 7 (2007), 2, 153-166. MR 2344194, 10.4310/cis.2007.v7.n2.a3
Reference: [10] Riccia, G. Della, Shapiro, A.: Minimum rank and minimum trace of covariance matrices..Psychometrika 47 (1982), 443-448. MR 0691830, 10.1007/bf02293708
Reference: [11] Fazel, M.: Matrix rank minimization with applications..Elec. Eng. Dept. Stanford University 54 (2002), 1-130.
Reference: [12] Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory..In: Proc. American Control Conference 4 (2004), pp. 3273-3278. 10.23919/acc.2004.1384521
Reference: [13] Geweke, J.: The dynamic factor analysis of economic time series models..In: Latent Variables in Socio-Economic Models, SSRI workshop series, North-Holland 1977, pp. 365-383.
Reference: [14] Guttman, L.: Some necessary conditions for common-factor analysis..Psychometrika 19 (1954), 2, 149-161. MR 0091235, 10.1007/bf02289162
Reference: [15] Harman, H. H., Jones, W. H.: Factor analysis by minimizing residuals (minres)..Psychometrika 31 (1066), 3, 351-368. MR 0201008, 10.1007/bf02289468
Reference: [16] Heij, C., Scherrer, W., Deistler, M.: System identification by dynamic factor models..SIAM J. Control Optim. 35 (1997), 6, 1924-1951. MR 1478648, 10.1137/s0363012995282127
Reference: [17] Helmke, U., Shayman, M. A.: Critical points of matrix least squares distance functions..Linear Algebra Appl. 215 (1995), 1-19. MR 1317470, 10.1016/0024-3795(93)00070-g
Reference: [18] Lax, P. D.: Linear Algebra and Its Applications. Second edition..Wiley-Interscience, 2007. MR 2356919
Reference: [19] Lewis, A. S., Malick, J.: Alternating projections on manifolds..Math. Oper. Res. 33 (2008), 1, 216-234. MR 2393548, 10.1287/moor.1070.0291
Reference: [20] Ning, L., Georgiou, T. T., Tannenbaum, A., Boyd, S. P.: Linear models based on noisy data and the Frisch scheme..SIAM Rev. 57 (2015), 2, 167-197. MR 3345338, 10.1137/130921179
Reference: [21] Reiersøl, O.: Identifiability of a linear relation between variables which are subject to error..Econometrica: J. Economet. Soc. 18 (1950), 4, 375-389. MR 0038054, 10.2307/1907835
Reference: [22] Scherrer, W., Deistler, M.: A structure theory for linear dynamic errors-in-variables models..SIAM J. Control Optim. 36 (1998), 6, 2148-2175. MR 1638960, 10.1137/s0363012994262464
Reference: [23] Shapiro, A.: Rank-reducibility of a symmetric matrix and sampling theory of minimum trace factor analysis..Psychometrika 47 (1982), 2, 187-199. MR 0667012, 10.1007/bf02296274
Reference: [24] Shapiro, A., Berge, J. M. F. Ten: Statistical inference of minimum rank factor analysis..Psychometrika 67 (2002), 1, 79-94. MR 1960829, 10.1007/bf02294710
Reference: [25] Zorzi, M., Sepulchre, R.: AR identification of latent-variable graphical models..IEEE Trans. Automat. Control 61 (2016), 9, 2327-2340. MR 3545056, 10.1109/tac.2015.2491678
.

Files

Files Size Format View
Kybernetika_55-2019-4_9.pdf 570.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo