Previous |  Up |  Next

Article

Title: Matlis dual of local cohomology modules (English)
Author: Naal, Batoul
Author: Khashyarmanesh, Kazem
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 1-7
Summary lang: English
.
Category: math
.
Summary: Let $(R,\mathfrak m)$ be a commutative Noetherian local ring, $\mathfrak a$ be an ideal of $R$ and $M$ a finitely generated $R$-module such that $\mathfrak a M\neq M$ and ${\rm cd}(\mathfrak a,M) - {\rm grade}(\mathfrak a,M)\leq 1$, where ${\rm cd}(\mathfrak a,M)$ is the cohomological dimension of $M$ with respect to $\mathfrak a$ and ${\rm grade}(\mathfrak a,M)$ is the $M$-grade of $\mathfrak a$. Let $D(-) := {\rm Hom}_R(-,E)$ be the Matlis dual functor, where $E := E(R/\mathfrak m)$ is the injective hull of the residue field $R/\mathfrak m$. We show that there exists the following long exact sequence \begin {eqnarray*} 0 \longrightarrow & H^{n-2}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \longrightarrow D(M) \\ \longrightarrow & H^{n-1}_{\mathfrak a}(D(H^{n-1}_{\mathfrak a}(M))) \longrightarrow H^{n+1}_{\mathfrak a}(D(H^{n}_{\mathfrak a}(M))) \\ \longrightarrow & H^{n}_{\mathfrak a}(D(H^{n-1}_{(x_1, \ldots ,x_{n-1})}(M))) \longrightarrow H^{n}_{\mathfrak a}(D(H^{n-1}_\mathfrak (M))) \longrightarrow \ldots , \end {eqnarray*} where $n:={\rm cd}(\mathfrak a,M)$ is a non-negative integer, $x_1, \ldots ,x_{n-1}$ is a regular sequence in $\mathfrak a$ on $M$ and, for an $R$-module $L$, $H^i_{\mathfrak a}(L)$ is the $i$th local cohomology module of $L$ with respect to $\mathfrak a$. (English)
Keyword: local cohomology module
Keyword: Matlis dual functor, filter regular sequence
MSC: 13D07
MSC: 13D45
idZBL: 07217118
idMR: MR4078343
DOI: 10.21136/CMJ.2019.0134-18
.
Date available: 2020-03-10T10:12:26Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148037
.
Reference: [1] Brodmann, M. P., Sharp, R. Y.: Local Cohomology. An Algebraic Introduction with Geometric Applications.Cambridge Studies in Advanced Mathematics 136, Cambridge University Press, Cambridge (2013). Zbl 1263.13014, MR 3014449, 10.1017/CBO9781139044059
Reference: [2] Hellus, M.: On the associated primes of Matlis duals of top local cohomology modules.Commun. Algebra 33 (2005), 3997-4009. Zbl 1101.13026, MR 2183976, 10.1080/00927870500261314
Reference: [3] Hellus, M.: Local Cohomology and Matlis Duality.Habilitationsschrift, Leipzing Available at https://www.uni-regensburg.de/mathematik/mathematik-hellus/ medien/habilitationsschriftohnedeckblatt.pdf (2006).
Reference: [4] Hellus, M.: Finiteness properties of duals of local cohomology modules.Commun. Algebra 35 (2007), 3590-3602. Zbl 1129.13018, MR 2362672, 10.1080/00927870701512069
Reference: [5] Hellus, M., Schenzel, P.: Notes on local cohomology and duality.J. Algebra 401 (2014), 48-61. Zbl 1304.13033, MR 3151247, 10.1016/j.jalgebra.2013.12.006
Reference: [6] Khashyarmanesh, K.: On the finiteness properties of extension and torsion functors of local cohomology modules.Proc. Am. Math. Soc. 135 (2007), 1319-1327. Zbl 1111.13016, MR 2276640, 10.1090/s0002-9939-06-08664-3
Reference: [7] Khashyarmanesh, K.: On the Matlis duals of local cohomology modules.Arch. Math. 88 (2007), 413-418. Zbl 1112.13020, MR 2316886, 10.1007/s00013-006-1115-1
Reference: [8] Khashyarmanesh, K., Salarian, S.: Filter regular sequences and the finiteness of local cohomology modules.Commun. Algebra 26 (1998), 2483-2490. Zbl 0909.13007, MR 1627876, 10.1080/00927879808826293
Reference: [9] Khashyarmanesh, K., Salarian, S.: On the associated primes of local cohomology modules.Commun. Algebra 27 (1999), 6191-6198. Zbl 0940.13013, MR 1726302, 10.1080/00927879908826816
Reference: [10] Schenzel, P.: Matlis duals of local cohomology modules and their endomorphism rings.Arch. Math. 95 (2010), 115-123. Zbl 1200.13028, MR 2674247, 10.1007/s00013-010-0149-6
Reference: [11] Schenzel, P., Trung, N. V., Cuong, N. T.: Verallgemeinerte Cohen-Macaulay-Moduln.Math. Nachr. 85 (1978), 57-73 German. Zbl 0398.13014, MR 0517641, 10.1002/mana.19780850106
Reference: [12] Stückrad, J., Vogel, W.: Buchsbaum Rings and Applications. An Interaction Between Algebra, Geometry and Topology.Springer, Berlin (1986). Zbl 0606.13018, MR 0881220
.

Files

Files Size Format View
CzechMathJ_70-2020-1_1.pdf 242.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo