Previous |  Up |  Next

Article

Title: Blow-up for the compressible isentropic Navier-Stokes-Poisson equations (English)
Author: Dong, Jianwei
Author: Zhu, Junhui
Author: Wang, Yanping
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 9-19
Summary lang: English
.
Category: math
.
Summary: We will show the blow-up of smooth solutions to the Cauchy problems for compressible unipolar isentropic Navier-Stokes-Poisson equations with attractive forcing and compressible bipolar isentropic Navier-Stokes-Poisson equations in arbitrary dimensions under some restrictions on the initial data. The key of the proof is finding the relations between the physical quantities and establishing some differential inequalities. (English)
Keyword: compressible isentropic Navier-Stokes-Poisson equations
Keyword: unipolar
Keyword: bipolar
Keyword: smooth solution
Keyword: blow-up
MSC: 35B44
MSC: 35Q35
idZBL: 07217119
idMR: MR4078344
DOI: 10.21136/CMJ.2019.0156-18
.
Date available: 2020-03-10T10:12:49Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148040
.
Reference: [1] Cai, H., Tan, Z.: Existence and stability of stationary solutions to the compressible Navier-Stokes-Poisson equations.Nonlinear Anal., Real World Appl. 32 (2016), 260-293. Zbl 1348.35183, MR 3514925, 10.1016/j.nonrwa.2016.04.010
Reference: [2] Cai, H., Tan, Z.: Asymptotic stability of stationary solutions to the compressible bipolar Navier-Stokes-Poisson equations.Math. Methods Appl. Sci. 40 (2017), 4493-4513. Zbl 1373.35233, MR 3672880, 10.1002/mma.4320
Reference: [3] Cho, Y., Jin, B.: Blow up of viscous heat-conducting compressible flows.J. Math. Anal. Appl. 320 (2006), 819-826. Zbl 1121.35110, MR 2225997, 10.1016/j.jmaa.2005.08.005
Reference: [4] Du, D. P., Li, J. Y., Zhang, K. J.: Blow-up of smooth solutions to the Navier-Stokes equations for compressible isothermal fluids.Commun. Math. Sci. 11 (2013), 541-546. Zbl 1305.76089, MR 3002564, 10.4310/CMS.2013.v11.n2.a11
Reference: [5] Hsiao, L., Li, H. L.: Compressible Navier-Stokes-Poisson equations.Acta Math. Sci., Ser. B 30 (2010), 1937-1948. Zbl 1240.35406, MR 2778703, 10.1016/S0252-9602(10)60184-1
Reference: [6] Hsiao, L., Li, H. L., Yang, T., Zou, C.: Compressible non-isentropic bipolar Navier-Stokes-Poisson system in $\mathbb{R}^{3}$.Acta Math. Sci., Ser. B 31 (2011), 2169-2194. Zbl 1265.35265, MR 2931498, 10.1016/S0252-9602(11)60392-5
Reference: [7] Jiang, F., Tan, Z.: Blow-up of viscous compressible reactive self-gravitating gas.Acta Math. Appl. Sin., Engl. Ser. 28 (2012), 401-408. Zbl 1359.35131, MR 2914383, 10.1007/s10255-012-0152-8
Reference: [8] Jiu, Q. S., Wang, Y. X., Xin, Z. P.: Remarks on blow-up of smooth solutions to the compressible fluid with constant and degenerate viscosities.J. Differ. Equations 259 (2015), 2981-3003. Zbl 1319.35194, MR 3360663, 10.1016/j.jde.2015.04.007
Reference: [9] Lai, N. A.: Blow up of classical solutions to the isentropic compressible Navier-Stokes equations.Nonlinear Anal., Real World Appl. 25 (2015), 112-117. Zbl 1327.35299, MR 3351014, 10.1016/j.nonrwa.2015.03.005
Reference: [10] Rozanova, O.: Blow-up of smooth highly decreasing at infinity solutions to the compressible Navier-Stokes equations.J. Differ. Equations 245 (2008), 1762-1774. Zbl 1154.35070, MR 2433485, 10.1016/j.jde.2008.07.007
Reference: [11] Tan, Z., Wang, Y. J.: Blow-up of smooth solutions to the Navier-Stokes equations of compressible viscous heat-conducting fluids.J. Aust. Math. Soc. 88 (2010), 239-246. Zbl 1191.35210, MR 2629933, 10.1017/S144678871000008X
Reference: [12] Tang, T., Zhang, Z. J.: Blow-up of smooth solution to the compressible Navier-Stokes-Poisson equations.Bull. Malays. Math. Sci. Soc. 39 (2016), 1487-1497. Zbl 1358.35133, MR 3549976, 10.1007/s40840-015-0256-4
Reference: [13] Wang, G. W., Guo, B. L.: Blow-up of the smooth solutions to the compressible Navier-Stokes equations.Math. Methods Appl. Sci. 40 (2017), 5262-5272. Zbl 1383.35034, MR 3689262, 10.1002/mma.4384
Reference: [14] Wang, Y. Z., Wang, K. Y.: Asymptotic behavior of classical solutions to the compressible Navier-Stokes-Poisson equations in three and higher dimensions.J. Differ. Equations 259 (2015), 25-47. Zbl 1317.35211, MR 3335919, 10.1016/j.jde.2015.01.042
Reference: [15] Xie, H. Z.: Blow-up of smooth solutions to the Navier-Stokes-Poisson equations.Math. Methods Appl. Sci. 34 (2011), 242-248. Zbl 1206.35201, MR 2779329, 10.1002/mma.1353
Reference: [16] Xin, Z. P.: Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density.Commun. Pure Appl. Math. 51 (1998), 229-240. Zbl 0937.35134, MR 1488513, 10.1002/(SICI)1097-0312(199803)51:3\%3C229::AID-CPA1\%3E3.0.CO;2-C
Reference: [17] Xin, Z. P., Yan, W.: On blowup of classical solutions to the compressible Navier-Stokes equations.Commun. Math. Phys. 321 (2013), 529-541. Zbl 1287.35059, MR 3063918, 10.1007/s00220-012-1610-0
Reference: [18] Zhao, Z. Y., Li, Y. P.: Global existence and optimal decay rate of the compressible bipolar Navier-Stokes-Poisson equations with external force.Nonlinear Anal., Real World Appl. 16 (2014), 146-162. Zbl 1297.35195, MR 3123807, 10.1016/j.nonrwa.2013.09.014
Reference: [19] Zou, C.: Asymptotical behavior of bipolar non-isentropic compressible Navier-Stokes-Poisson system.Acta Math. Appl. Sin., Engl. Ser. 32 (2016), 813-832. Zbl 1364.35291, MR 3552850, 10.1007/s10255-016-0596-3
.

Files

Files Size Format View
CzechMathJ_70-2020-1_2.pdf 268.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo