Previous |  Up |  Next

Article

Title: Derived equivalences between generalized matrix algebras (English)
Author: Chen, QingHua
Author: Liu, HongJin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 147-160
Summary lang: English
.
Category: math
.
Summary: We construct derived equivalences between generalized matrix algebras. We record several corollaries. In particular, we show that the $n$-replicated algebras of two derived equivalent, finite-dimensional algebras are also derived equivalent. (English)
Keyword: derived equivalence
Keyword: tilting complex
Keyword: generalized matrix algebra
MSC: 16E35
MSC: 16G10
MSC: 16S50
idZBL: 07217125
idMR: MR4078350
DOI: 10.21136/CMJ.2019.0196-18
.
Date available: 2020-03-10T10:16:06Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148046
.
Reference: [1] Asashiba, H.: A covering technique for derived equivalence.J. Algebra 191 (1997), 382-415. Zbl 0871.16006, MR 1444505, 10.1006/jabr.1997.6906
Reference: [2] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: Cluster categories and duplicated algebras.J. Algebra 305 (2006), 548-561. Zbl 1114.16010, MR 2264143, 10.1016/j.jalgebra.2005.12.002
Reference: [3] Assem, I., Brüstle, T., Schiffler, R., Todorov, G.: $m$-cluster categories and $m$-replicated algebras.J. Pure Appl. Algebra 212 (2008), 884-901. Zbl 1143.16015, MR 2363499, 10.1016/j.jpaa.2007.07.013
Reference: [4] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65, Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309
Reference: [5] Enochs, E., Torrecillas, B.: Flat covers over formal triangular matrix rings and minimal Quillen factorizations.Forum Math. 23 (2011), 611-624. Zbl 1227.16002, MR 2805196, 10.1515/FORM.2011.021
Reference: [6] Gao, N., Psaroudakis, C.: Gorenstein homological aspects of monomorphism categories via Morita rings.Algebr. Represent. Theory 20 (2017), 487-529. Zbl 1382.16008, MR 3638357, 10.1007/s10468-016-9652-1
Reference: [7] Green, E. L.: On the representation theory of rings in matrix form.Pac. J. Math. 100 (1982), 123-138. Zbl 0502.16016, MR 0661444, 10.2140/pjm.1982.100.123
Reference: [8] Green, E. L., Psaroudakis, C.: On Artin algebras arising from Morita contexts.Algebr. Represent. Theory 17 (2014), 1485-1525. Zbl 1317.16003, MR 3260907, 10.1007/s10468-013-9457-4
Reference: [9] Happel, D., Seidel, U.: Piecewise hereditary Nakayama algebras.Algebr. Represent. Theory 13 (2010), 693-704. Zbl 1217.16015, MR 2736030, 10.1007/s10468-009-9169-y
Reference: [10] Herscovich, E., Solotar, A.: Derived invariance of Hochschild-Mitchell (co)homology and one-point extensions.J. Algebra 315 (2007), 852-873. Zbl 1184.18013, MR 2351897, 10.1016/j.jalgebra.2007.05.014
Reference: [11] Iversen, B.: Cohomology of Sheaves.Universitext, Springer, Berlin (1986). Zbl 1272.55001, MR 0842190, 10.1007/978-3-642-82783-9
Reference: [12] Ladkani, S.: On derived equivalences of lines, rectangles and triangles.J. Lond. Math. Soc., II. Ser. 87 (2013), 157-176. Zbl 1284.16008, MR 3022711, 10.1112/jlms/jds034
Reference: [13] Li, L.: Stratifications of finite directed categories and generalized APR tilting modules.Commun. Algebra 43 (2015), 1723-1741. Zbl 1360.18003, MR 3316816, 10.1080/00927872.2013.879157
Reference: [14] Li, L.: Derived equivalences between triangular matrix algebras.Commun. Algebra 46 (2018), 615-628. Zbl 06875436, MR 3764883, 10.1080/00927872.2017.1327051
Reference: [15] Miličić, D.: Lectures on Derived Categories.Available at http://www.math.utah.edu/ {milicic/Eprints/dercat.pdf}.
Reference: [16] Miyachi, J.-I.: Extensions of rings and tilting complexes.J. Pure Appl. Algebra 105 (1995), 183-194. Zbl 0846.16005, MR 1365875, 10.1016/0022-4049(94)00145-6
Reference: [17] Rickard, J.: Derived categories and stable equivalence.J. Pure Appl. Algebra 61 (1989), 303-317. Zbl 0685.16016, MR 1027750, 10.1016/0022-4049(89)90081-9
Reference: [18] Rickard, J.: Morita theory for derived categories.J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. Zbl 0642.16034, MR 1002456, 10.1112/jlms/s2-39.3.436
Reference: [19] Rickard, J.: Derived equivalences as derived functors.J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. Zbl 0683.16030, MR 1099084, 10.1112/jlms/s2-43.1.37
Reference: [20] Xi, C.: Constructions of derived equivalences for algebras and rings.Front. Math. China 12 (2017), 1-18. Zbl 1396.18010, MR 3569663, 10.1007/s11464-016-0593-0
Reference: [21] Zhang, S.: Partial tilting modules over $m$-replicated algebras.J. Algebra 323 (2010), 2538-2546. Zbl 1242.16015, MR 2602394, 10.1016/j.jalgebra.2010.02.002
.

Files

Files Size Format View
CzechMathJ_70-2020-1_8.pdf 318.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo