Previous |  Up |  Next

Article

Title: The torsion theory and the Melkersson condition (English)
Author: Yoshizawa, Takeshi
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 121-145
Summary lang: English
.
Category: math
.
Summary: We consider a generalization of the notion of torsion theory, which is associated with a Serre subcategory over a commutative Noetherian ring. In 2008 Aghapournahr and Melkersson investigated the question of when local cohomology modules belong to a Serre subcategory of the module category. In their study, the notion of Melkersson condition was defined as a suitable condition in local cohomology theory. One of our purposes in this paper is to show how naturally the concept of Melkersson condition appears in the context of torsion theories. (English)
Keyword: Melkersson condition
Keyword: Serre subcategory
Keyword: torsion theory
MSC: 13C60
MSC: 13D30
idZBL: 07217124
idMR: MR4078349
DOI: 10.21136/CMJ.2019.0193-18
.
Date available: 2020-03-10T10:15:39Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148045
.
Reference: [1] Aghapournahr, M., Melkersson, L.: Local cohomology and Serre subcategories.J. Algebra 320 (2008), 1275-1287. Zbl 1153.13014, MR 2427643, 10.1016/j.jalgebra.2008.04.002
Reference: [2] Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories.Mem. Am. Math. Soc. 883 (2007), 207 pages. Zbl 1124.18005, MR 2327478, 10.1090/memo/0883
Reference: [3] Dickson, S. E.: A torsion theory for Abelian categories.Trans. Am. Math. Soc. 121 (1966), 223-235. Zbl 0138.01801, MR 0191935, 10.2307/1994341
Reference: [4] Gabriel, P.: Des catégories abéliennes.Bull. Soc. Math. Fr. 90 (1962), 323-448 French. Zbl 0201.35602, MR 0232821, 10.24033/bsmf.1583
Reference: [5] Lambek, J.: Torsion Theories, Additive Semantics, and Rings of Quotients.Lecture Notes in Mathematics 177, Springer, Berlin (1971). Zbl 0213.31601, MR 0284459, 10.1007/BFb0061029
Reference: [6] Stenström, B.: Rings and Modules of Quotients.Lecture Notes in Mathematics 237, Springer, Berlin (1971). Zbl 0229.16003, MR 0325663, 10.1007/BFb0059904
Reference: [7] Stenström, B.: Rings of Quotients. An Introduction to Methods of Ring Theory.Die Grundlehren der Mathematischen Wissenschaften 217, Springer, Berlin (1975). Zbl 0296.16001, MR 0389953, 10.1007/978-3-642-66066-5
Reference: [8] Yoshizawa, T.: Subcategories of extension modules by Serre subcategories.Proc. Am. Math. Soc. 140 (2012), 2293-2305. Zbl 1273.13018, MR 2898693, 10.1090/S0002-9939-2011-11108-0
Reference: [9] Yoshizawa, T.: On the closedness of taking injective hulls of several Serre subcategories.Commun. Algebra 45 (2017), 4846-4854. Zbl 1390.13040, MR 3670355, 10.1080/00927872.2017.1284226
.

Files

Files Size Format View
CzechMathJ_70-2020-1_7.pdf 375.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo