Previous |  Up |  Next

Article

Keywords:
TI-subgroup; QTI-subgroup; maximal subgroup; Frobenius group; solvable group
Summary:
Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\neq x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.
References:
[1] Arad, Z., Herfort, W.: Classification of finite groups with a CC-subgroup. Commun. Algebra 32 (2004), 2087-2098. DOI 10.1081/AGB-120037209 | MR 2099578 | Zbl 1070.20023
[2] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper & Row, New York (1968). MR 0231903 | Zbl 0185.05701
[3] Guo, X., Li, S., Flavell, P.: Finite groups whose abelian subgroups are TI-subgroups. J. Algebra 307 (2007), 565-569. DOI 10.1016/j.jalgebra.2006.10.001 | MR 2275363 | Zbl 1116.20014
[4] Huppert, B.: Endliche Gruppen I. Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin German (1967). DOI 10.1007/978-3-642-64981-3 | MR 0224703 | Zbl 0217.07201
[5] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. An Introduction. Universitext, Springer, New York (2004). DOI 10.1007/b97433 | MR 2014408 | Zbl 1047.20011
[6] Li, S.: Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups. Math. Proc. R. Ir. Acad. 100A (2000), 65-71. MR 1882200 | Zbl 0978.20012
[7] Lu, J., Guo, X.: Finite groups all of whose second maximal subgroups are QTI-subgroups. Commun. Algebra 40 (2012), 3726-3732. DOI 10.1080/00927872.2011.594135 | MR 2982892 | Zbl 1259.20021
[8] Lu, J., Pang, L.: A note on TI-subgroups of finite groups. Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. DOI 10.1007/s12044-012-0055-x | MR 2909585 | Zbl 1272.20018
[9] Lu, J., Pang, L., Zhong, X.: Finite groups with non-nilpotent maximal subgroups. Monatsh. Math. 171 (2013), 425-431. DOI 10.1007/s00605-012-0432-7 | MR 3090801 | Zbl 1277.20017
[10] Qian, G., Tang, F.: Finite groups all of whose abelian subgroups are QTI-subgroups. J. Algebra 320 (2008), 3605-3611. DOI 10.1016/j.jalgebra.2008.08.009 | MR 2455518 | Zbl 1178.20014
[11] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1996). DOI 10.1007/978-1-4419-8594-1 | MR 1357169 | Zbl 0836.20001
[12] Shi, J., Zhang, C.: Finite groups in which all nonabelian subgroups are TI-subgroups. J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. DOI 10.1142/S0219498813500746 | MR 3096855 | Zbl 1285.20020
[13] Walls, G.: Trivial intersection groups. Arch. Math. 32 (1979), 1-4. DOI 10.1007/BF01238459 | MR 0532840 | Zbl 0388.20011
Partner of
EuDML logo