Previous |  Up |  Next

Article

Title: On TI-subgroups and QTI-subgroups of finite groups (English)
Author: Chen, Ruifang
Author: Zhao, Xianhe
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 1
Year: 2020
Pages: 179-185
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a group. A subgroup $H$ of $G$ is called a TI-subgroup if $H\cap H^g=1$ or $H$ for every $g\in G$ and $H$ is called a QTI-subgroup if $C_G(x) \le N_G(H)$ for any $1\neq x\in H$. In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized. (English)
Keyword: TI-subgroup
Keyword: QTI-subgroup
Keyword: maximal subgroup
Keyword: Frobenius group
Keyword: solvable group
MSC: 20D10
idZBL: 07217127
idMR: MR4078352
DOI: 10.21136/CMJ.2019.0203-18
.
Date available: 2020-03-10T10:16:56Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148048
.
Reference: [1] Arad, Z., Herfort, W.: Classification of finite groups with a CC-subgroup.Commun. Algebra 32 (2004), 2087-2098. Zbl 1070.20023, MR 2099578, 10.1081/AGB-120037209
Reference: [2] Gorenstein, D.: Finite Groups.Harper's Series in Modern Mathematics, Harper & Row, New York (1968). Zbl 0185.05701, MR 0231903
Reference: [3] Guo, X., Li, S., Flavell, P.: Finite groups whose abelian subgroups are TI-subgroups.J. Algebra 307 (2007), 565-569. Zbl 1116.20014, MR 2275363, 10.1016/j.jalgebra.2006.10.001
Reference: [4] Huppert, B.: Endliche Gruppen I.Die Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin German (1967). Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [5] Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. An Introduction.Universitext, Springer, New York (2004). Zbl 1047.20011, MR 2014408, 10.1007/b97433
Reference: [6] Li, S.: Finite non-nilpotent groups all of whose second maximal subgroups are TI-groups.Math. Proc. R. Ir. Acad. 100A (2000), 65-71. Zbl 0978.20012, MR 1882200
Reference: [7] Lu, J., Guo, X.: Finite groups all of whose second maximal subgroups are QTI-subgroups.Commun. Algebra 40 (2012), 3726-3732. Zbl 1259.20021, MR 2982892, 10.1080/00927872.2011.594135
Reference: [8] Lu, J., Pang, L.: A note on TI-subgroups of finite groups.Proc. Indian Acad. Sci., Math. Sci. 122 (2012), 75-77. Zbl 1272.20018, MR 2909585, 10.1007/s12044-012-0055-x
Reference: [9] Lu, J., Pang, L., Zhong, X.: Finite groups with non-nilpotent maximal subgroups.Monatsh. Math. 171 (2013), 425-431. Zbl 1277.20017, MR 3090801, 10.1007/s00605-012-0432-7
Reference: [10] Qian, G., Tang, F.: Finite groups all of whose abelian subgroups are QTI-subgroups.J. Algebra 320 (2008), 3605-3611. Zbl 1178.20014, MR 2455518, 10.1016/j.jalgebra.2008.08.009
Reference: [11] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80, Springer, New York (1996). Zbl 0836.20001, MR 1357169, 10.1007/978-1-4419-8594-1
Reference: [12] Shi, J., Zhang, C.: Finite groups in which all nonabelian subgroups are TI-subgroups.J. Algebra Appl. 13 (2014), Article ID 1350074, 3 pages. Zbl 1285.20020, MR 3096855, 10.1142/S0219498813500746
Reference: [13] Walls, G.: Trivial intersection groups.Arch. Math. 32 (1979), 1-4. Zbl 0388.20011, MR 0532840, 10.1007/BF01238459
.

Files

Files Size Format View
CzechMathJ_70-2020-1_10.pdf 254.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo