Previous |  Up |  Next

Article

Title: Sequentially Right Banach spaces of order $p$ (English)
Author: Dehghani, Mahdi
Author: Dehghani, Mohammad B.
Author: Moshtaghioun, Mohammad S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 51-67
Summary lang: English
.
Category: math
.
Summary: We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\leq p\leq\infty$. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property. (English)
Keyword: Right topology
Keyword: sequentially Right Banach space
Keyword: pseudo weakly compact operator
Keyword: Pełczyński's property (V) of order $p$
Keyword: limited $p$-converging operator
Keyword: $p$-Gelfand--Phillips property
Keyword: reciprocal Dunford--Pettis property of order $p$
MSC: 46B20
MSC: 46B25
MSC: 47L05
idZBL: Zbl 07217158
idMR: MR4093429
DOI: 10.14712/1213-7243.2020.011
.
Date available: 2020-04-30T11:17:22Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148075
.
Reference: [1] Andrews K. T.: Dunford–Pettis sets in the space of Bochner integrable functions.Math. Ann. 241 (1979), no. 1, 35–41. MR 0531148, 10.1007/BF01406706
Reference: [2] Bator E., Lewis P., Ochoa J.: Evaluation maps, restriction maps, and compactness.Colloq. Math. 78 (1998), no. 1, 1–17. Zbl 0948.46008, MR 1658115, 10.4064/cm-78-1-1-17
Reference: [3] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [4] Castillo J. M. F.: $p$-converging operators and weakly-$p$-compact operators in $L_p$-spaces.Actas del II Congreso de Análisis Funcional, Jarandilla de la Vera, Cáceres, June 1990, Extracta Math. (1990), 46–54. MR 1125690
Reference: [5] Castillo J. M. F., Sanchez F.: Dunford–Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid. 6 (1993), no. 1, 43–59. MR 1245024
Reference: [6] Castillo J. M. F., Sánchez F.: Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces.J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR 1283055, 10.1006/jmaa.1994.1246
Reference: [7] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X,Y)$ and in projective tensor products.Colloq. Math. 146 (2017), no. 2, 239–252. MR 3622375, 10.4064/cm6184-12-2015
Reference: [8] Chen D., Chávez-Domínguez J. A., Li L.: $p$-converging operators and Dunford–Pettis property of order $p$.J. Math. Anal. Appl. 461 (2018), no. 2, 1053–1066. MR 3765477, 10.1016/j.jmaa.2018.01.051
Reference: [9] Defant A., Floret K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438
Reference: [10] Dehghani M. B., Moshtaghioun S. M.: On the $p$-Schur property of Banach spaces.Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR 3758748, 10.1215/20088752-2017-0033
Reference: [11] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: On the limited $p$-Schur property of some operator spaces.Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR 3758748
Reference: [12] Delgado J. M., Pi neiro C.: A note on $p$-limited sets.J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR 3111861, 10.1016/j.jmaa.2013.08.045
Reference: [13] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
Reference: [14] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297
Reference: [15] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell_1$.Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172
Reference: [16] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591
Reference: [17] Ghenciu I.: Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products.Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR 3390279
Reference: [18] Ghenciu I.: $L$-sets and property $(SR^*)$ in spaces of compact operators.Monatsh. Math. 181 (2016), no. 3, 609–628. MR 3552802, 10.1007/s00605-016-0884-2
Reference: [19] Ghenciu I.: A note on some isomorphic properties in projective tensor products.Extracta Math. 32 (2017), no. 1, 1–24. MR 3726522
Reference: [20] Ghenciu I.: A note on Dunford–Pettis like properties and complemented spaces of operators.Comment. Math. Univ. Carolin. 59 (2018), no. 2, 207–222. MR 3815686
Reference: [21] Ghenciu I.: The $p$-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets.Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR 3831309, 10.1007/s10474-018-0836-5
Reference: [22] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11
Reference: [23] Grothedieck A.: Sur les applications lineaires faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173 (French). MR 0058866, 10.4153/CJM-1953-017-4
Reference: [24] Kačena M.: On sequentially right Banach spaces.Extracta Math. 26 (2011), no. 1, 1–27. MR 2908388
Reference: [25] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360
Reference: [26] Li L., Chen D., Chávez-Domínguez J. A.: Pełczyński's property ($V^*$) of order $p$ and its quantification.Math. Nachr. 291 (2018), no. 2–3, 420–442. MR 3767145, 10.1002/mana.201600335
Reference: [27] Pełczyński A.: On Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295
Reference: [28] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Topological characterisation of weakly compact operators.J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR 2270063, 10.1016/j.jmaa.2006.02.066
Reference: [29] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Weakly compact operators and the strong$^*$ topology for a Banach space.Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1249–1267. MR 2747954
Reference: [30] Read C. J.: Strictly singular operators and the invariant subspace problem.Studia Math. 132 (1999), no. 3, 203–226. MR 1669678, 10.4064/sm-132-3-203-226
Reference: [31] Ryan R. A.: Introduction to Tensor Products of Banach Spaces.Springer Monographs in Mathematics, Springer, London, 2002. Zbl 1090.46001, MR 1888309
Reference: [32] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspace of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004
Reference: [33] Salimi M., Moshtaghioun S. M.: A new class of Banach spaces and its relation with some geometric properties of Banach spaces.Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR 2910729
Reference: [34] Zeekoei E. D., Fourie J. H.: On $p$-convergent operators on Banach lattices.Acta. Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 873–890. MR 3785686, 10.1007/s10114-017-7172-5
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_6.pdf 326.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo