Title:
|
Sequentially Right Banach spaces of order $p$ (English) |
Author:
|
Dehghani, Mahdi |
Author:
|
Dehghani, Mohammad B. |
Author:
|
Moshtaghioun, Mohammad S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
51-67 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order $p$, and those defined by the dual property, the sequentially Right$^*$ Banach spaces of order $p$ for $1\leq p\leq\infty$. These classes of Banach spaces are characterized by the notions of $L_p$-limited sets in the corresponding dual space and $R^*_p$ subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space $X$ and a reflexive Banach space $Y$ has the sequentially Right property of order $p$ when $X$ enjoys this property. (English) |
Keyword:
|
Right topology |
Keyword:
|
sequentially Right Banach space |
Keyword:
|
pseudo weakly compact operator |
Keyword:
|
Pełczyński's property (V) of order $p$ |
Keyword:
|
limited $p$-converging operator |
Keyword:
|
$p$-Gelfand--Phillips property |
Keyword:
|
reciprocal Dunford--Pettis property of order $p$ |
MSC:
|
46B20 |
MSC:
|
46B25 |
MSC:
|
47L05 |
idZBL:
|
Zbl 07217158 |
idMR:
|
MR4093429 |
DOI:
|
10.14712/1213-7243.2020.011 |
. |
Date available:
|
2020-04-30T11:17:22Z |
Last updated:
|
2022-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148075 |
. |
Reference:
|
[1] Andrews K. T.: Dunford–Pettis sets in the space of Bochner integrable functions.Math. Ann. 241 (1979), no. 1, 35–41. MR 0531148, 10.1007/BF01406706 |
Reference:
|
[2] Bator E., Lewis P., Ochoa J.: Evaluation maps, restriction maps, and compactness.Colloq. Math. 78 (1998), no. 1, 1–17. Zbl 0948.46008, MR 1658115, 10.4064/cm-78-1-1-17 |
Reference:
|
[3] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105 |
Reference:
|
[4] Castillo J. M. F.: $p$-converging operators and weakly-$p$-compact operators in $L_p$-spaces.Actas del II Congreso de Análisis Funcional, Jarandilla de la Vera, Cáceres, June 1990, Extracta Math. (1990), 46–54. MR 1125690 |
Reference:
|
[5] Castillo J. M. F., Sanchez F.: Dunford–Pettis-like properties of continuous vector function spaces.Rev. Mat. Univ. Complut. Madrid. 6 (1993), no. 1, 43–59. MR 1245024 |
Reference:
|
[6] Castillo J. M. F., Sánchez F.: Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces.J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR 1283055, 10.1006/jmaa.1994.1246 |
Reference:
|
[7] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X,Y)$ and in projective tensor products.Colloq. Math. 146 (2017), no. 2, 239–252. MR 3622375, 10.4064/cm6184-12-2015 |
Reference:
|
[8] Chen D., Chávez-Domínguez J. A., Li L.: $p$-converging operators and Dunford–Pettis property of order $p$.J. Math. Anal. Appl. 461 (2018), no. 2, 1053–1066. MR 3765477, 10.1016/j.jmaa.2018.01.051 |
Reference:
|
[9] Defant A., Floret K.: Tensor Norms and Operator Ideals.North-Holland Mathematics Studies, 176, North-Holland Publishing Co., Amsterdam, 1993. MR 1209438 |
Reference:
|
[10] Dehghani M. B., Moshtaghioun S. M.: On the $p$-Schur property of Banach spaces.Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR 3758748, 10.1215/20088752-2017-0033 |
Reference:
|
[11] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: On the limited $p$-Schur property of some operator spaces.Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR 3758748 |
Reference:
|
[12] Delgado J. M., Pi neiro C.: A note on $p$-limited sets.J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR 3111861, 10.1016/j.jmaa.2013.08.045 |
Reference:
|
[13] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004 |
Reference:
|
[14] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297 |
Reference:
|
[15] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell_1$.Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172 |
Reference:
|
[16] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591 |
Reference:
|
[17] Ghenciu I.: Property (wL) and the reciprocal Dunford–Pettis property in projective tensor products.Comment. Math. Univ. Carolin. 56 (2015), no. 3, 319–329. MR 3390279 |
Reference:
|
[18] Ghenciu I.: $L$-sets and property $(SR^*)$ in spaces of compact operators.Monatsh. Math. 181 (2016), no. 3, 609–628. MR 3552802, 10.1007/s00605-016-0884-2 |
Reference:
|
[19] Ghenciu I.: A note on some isomorphic properties in projective tensor products.Extracta Math. 32 (2017), no. 1, 1–24. MR 3726522 |
Reference:
|
[20] Ghenciu I.: A note on Dunford–Pettis like properties and complemented spaces of operators.Comment. Math. Univ. Carolin. 59 (2018), no. 2, 207–222. MR 3815686 |
Reference:
|
[21] Ghenciu I.: The $p$-Gelfand–Phillips property in spaces of operators and Dunford–Pettis like sets.Acta Math. Hungar. 155 (2018), no. 2, 439–457. MR 3831309, 10.1007/s10474-018-0836-5 |
Reference:
|
[22] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11 |
Reference:
|
[23] Grothedieck A.: Sur les applications lineaires faiblement compactes d'espaces du type $C(K)$.Canad. J. Math. 5 (1953), 129–173 (French). MR 0058866, 10.4153/CJM-1953-017-4 |
Reference:
|
[24] Kačena M.: On sequentially right Banach spaces.Extracta Math. 26 (2011), no. 1, 1–27. MR 2908388 |
Reference:
|
[25] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360 |
Reference:
|
[26] Li L., Chen D., Chávez-Domínguez J. A.: Pełczyński's property ($V^*$) of order $p$ and its quantification.Math. Nachr. 291 (2018), no. 2–3, 420–442. MR 3767145, 10.1002/mana.201600335 |
Reference:
|
[27] Pełczyński A.: On Banach spaces on which every unconditionally converging operator is weakly compact.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295 |
Reference:
|
[28] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Topological characterisation of weakly compact operators.J. Math. Anal. Appl. 325 (2007), no. 2, 968–974. MR 2270063, 10.1016/j.jmaa.2006.02.066 |
Reference:
|
[29] Peralta A. M., Villanueva I., Wright J. D. M., Ylinen K.: Weakly compact operators and the strong$^*$ topology for a Banach space.Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), no. 6, 1249–1267. MR 2747954 |
Reference:
|
[30] Read C. J.: Strictly singular operators and the invariant subspace problem.Studia Math. 132 (1999), no. 3, 203–226. MR 1669678, 10.4064/sm-132-3-203-226 |
Reference:
|
[31] Ryan R. A.: Introduction to Tensor Products of Banach Spaces.Springer Monographs in Mathematics, Springer, London, 2002. Zbl 1090.46001, MR 1888309 |
Reference:
|
[32] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspace of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004 |
Reference:
|
[33] Salimi M., Moshtaghioun S. M.: A new class of Banach spaces and its relation with some geometric properties of Banach spaces.Abstr. Appl. Anal. (2012), Art. ID 212957, 8 pages. MR 2910729 |
Reference:
|
[34] Zeekoei E. D., Fourie J. H.: On $p$-convergent operators on Banach lattices.Acta. Math. Sin. (Engl. Ser.) 34 (2018), no. 5, 873–890. MR 3785686, 10.1007/s10114-017-7172-5 |
. |