Previous |  Up |  Next

Article

Title: True preimages of compact or separable sets for functional analysts (English)
Author: Drewnowski, Lech
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 61
Issue: 1
Year: 2020
Pages: 69-82
Summary lang: English
.
Category: math
.
Summary: We discuss various results on the existence of `true' preimages under continuous open maps between $F$-spaces, $F$-lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts. (English)
Keyword: preimage
Keyword: open map
Keyword: complete metric space
Keyword: $F$-space
Keyword: $F$-lattice
Keyword: compact set
Keyword: uniformly open map
Keyword: surpositive operator
Keyword: lower semicontinuous set-valued map
MSC: 46A16
MSC: 46A30
MSC: 54C10
MSC: 54D65
MSC: 54E35
MSC: 54E40
MSC: 54E45
MSC: 54E50
idZBL: Zbl 07217159
idMR: MR4093430
DOI: 10.14712/1213-7243.2020.007
.
Date available: 2020-04-30T11:18:33Z
Last updated: 2022-04-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148076
.
Reference: [1] Aliprantis C., Burkinshaw O.: Locally Solid Riesz Spaces with Applications to Economics.Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003. MR 2011364, 10.1090/surv/105
Reference: [2] Bessaga C., Pełczyński A.: Selected Topics in Infinite-Dimensional Topology.Monografie Matematyczne, 58, PWN---Polish Scientific Publishers, Warsaw, 1975. MR 0478168
Reference: [3] Bourbaki N.: Éléments de mathématique. I: Les structures fondamentales de l'analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale.Deuxième édition revue et augmentée, Actualités Scientifiques et Industrielles, 1045, Hermann, Paris, 1958 (French). MR 0173226
Reference: [4] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
Reference: [5] Drewnowski L., Wnuk W.: On finitely generated vector sublattices.Studia Math. 245 (2019), no. 2, 129–167. MR 3863066, 10.4064/sm170524-23-12
Reference: [6] Engelking R.: General Topology.Biblioteka Matematyczna, Tom 47, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Zbl 0684.54001, MR 0500779
Reference: [7] Jarchow H.: Locally Convex Spaces.Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257
Reference: [8] Köthe G.: Topological Vector Spaces. I.Die Grundlehren der mathematischen Wissenschaften, 159, Springer, New York, 1969. MR 0248498
Reference: [9] Michael E.: A theorem on semi-continuous set-valued functions.Duke Math. J. 26 (1959), 647–651. MR 0109343, 10.1215/S0012-7094-59-02662-6
Reference: [10] Michael E.: $\aleph_0$-spaces.J. Math. Mech. 15 (1966), 983–1002. MR 0206907
Reference: [11] Michael E.: $G_\delta$ sections and compact-covering maps.Duke Math. J. 36 (1969), 125–127. MR 0240790, 10.1215/S0012-7094-69-03617-5
Reference: [12] Michael E., K. Nagami: Compact-covering images of metric spaces.Proc. Amer. Math. Soc. 37 (1973), 260–266. MR 0307148, 10.1090/S0002-9939-1973-0307148-4
Reference: [13] Nagami K.: Ranges which enable open maps to be compact-covering.General Topology and Appl. 3 (1973), 355–367. MR 0345055, 10.1016/0016-660X(73)90023-8
Reference: [14] Schaefer H. H.: Banach Lattices and Positive Operators.Die Grundlehren der mathematischen Wissenschaften, 215, Springer, New York, 1974. Zbl 0296.47023, MR 0423039
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_61-2020-1_7.pdf 303.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo