Title:
|
True preimages of compact or separable sets for functional analysts (English) |
Author:
|
Drewnowski, Lech |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
61 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
69-82 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We discuss various results on the existence of `true' preimages under continuous open maps between $F$-spaces, $F$-lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts. (English) |
Keyword:
|
preimage |
Keyword:
|
open map |
Keyword:
|
complete metric space |
Keyword:
|
$F$-space |
Keyword:
|
$F$-lattice |
Keyword:
|
compact set |
Keyword:
|
uniformly open map |
Keyword:
|
surpositive operator |
Keyword:
|
lower semicontinuous set-valued map |
MSC:
|
46A16 |
MSC:
|
46A30 |
MSC:
|
54C10 |
MSC:
|
54D65 |
MSC:
|
54E35 |
MSC:
|
54E40 |
MSC:
|
54E45 |
MSC:
|
54E50 |
idZBL:
|
Zbl 07217159 |
idMR:
|
MR4093430 |
DOI:
|
10.14712/1213-7243.2020.007 |
. |
Date available:
|
2020-04-30T11:18:33Z |
Last updated:
|
2022-04-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148076 |
. |
Reference:
|
[1] Aliprantis C., Burkinshaw O.: Locally Solid Riesz Spaces with Applications to Economics.Mathematical Surveys and Monographs, 105, American Mathematical Society, Providence, 2003. MR 2011364, 10.1090/surv/105 |
Reference:
|
[2] Bessaga C., Pełczyński A.: Selected Topics in Infinite-Dimensional Topology.Monografie Matematyczne, 58, PWN---Polish Scientific Publishers, Warsaw, 1975. MR 0478168 |
Reference:
|
[3] Bourbaki N.: Éléments de mathématique. I: Les structures fondamentales de l'analyse. Fascicule VIII. Livre III: Topologie générale. Chapitre 9: Utilisation des nombres réels en topologie générale.Deuxième édition revue et augmentée, Actualités Scientifiques et Industrielles, 1045, Hermann, Paris, 1958 (French). MR 0173226 |
Reference:
|
[4] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004 |
Reference:
|
[5] Drewnowski L., Wnuk W.: On finitely generated vector sublattices.Studia Math. 245 (2019), no. 2, 129–167. MR 3863066, 10.4064/sm170524-23-12 |
Reference:
|
[6] Engelking R.: General Topology.Biblioteka Matematyczna, Tom 47, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Zbl 0684.54001, MR 0500779 |
Reference:
|
[7] Jarchow H.: Locally Convex Spaces.Mathematische Leitfäden, B. G. Teubner, Stuttgart, 1981. Zbl 0466.46001, MR 0632257 |
Reference:
|
[8] Köthe G.: Topological Vector Spaces. I.Die Grundlehren der mathematischen Wissenschaften, 159, Springer, New York, 1969. MR 0248498 |
Reference:
|
[9] Michael E.: A theorem on semi-continuous set-valued functions.Duke Math. J. 26 (1959), 647–651. MR 0109343, 10.1215/S0012-7094-59-02662-6 |
Reference:
|
[10] Michael E.: $\aleph_0$-spaces.J. Math. Mech. 15 (1966), 983–1002. MR 0206907 |
Reference:
|
[11] Michael E.: $G_\delta$ sections and compact-covering maps.Duke Math. J. 36 (1969), 125–127. MR 0240790, 10.1215/S0012-7094-69-03617-5 |
Reference:
|
[12] Michael E., K. Nagami: Compact-covering images of metric spaces.Proc. Amer. Math. Soc. 37 (1973), 260–266. MR 0307148, 10.1090/S0002-9939-1973-0307148-4 |
Reference:
|
[13] Nagami K.: Ranges which enable open maps to be compact-covering.General Topology and Appl. 3 (1973), 355–367. MR 0345055, 10.1016/0016-660X(73)90023-8 |
Reference:
|
[14] Schaefer H. H.: Banach Lattices and Positive Operators.Die Grundlehren der mathematischen Wissenschaften, 215, Springer, New York, 1974. Zbl 0296.47023, MR 0423039 |
. |