Previous |  Up |  Next

Article

Title: Observer based control for strong practical stabilization of a class of uncertain time delay systems (English)
Author: Nadhem, Echi
Author: Benabdallah, Amel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 6
Year: 2019
Pages: 1016-1033
Summary lang: English
.
Category: math
.
Summary: In this paper, we address the strong practical stabilization problem for a class of uncertain time delay systems with a nominal part written in triangular form. We propose, firstly, a strong practical observer. Then, we show that strong practical stability of the closed loop system with a linear, parameter dependent, state feedback is achieved. Finally, a separation principle is established, that is, we implement the control law with estimate states given by the strong practical observer and we prove that the closed loop system is strong practical stable. With the help of a numerical example, effectiveness of the proposed approach is demonstrated. (English)
Keyword: observer
Keyword: exponential stability
Keyword: strong practical stability
Keyword: time delay
Keyword: Lyapunov--Krasovskii
MSC: 93C10
MSC: 93D15
idZBL: Zbl 07217224
idMR: MR4077142
DOI: 10.14736/kyb-2019-6-1016
.
Date available: 2020-05-20T15:17:51Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148089
.
Reference: [1] J., Anthonis,, A., Seuret,, J.-.P., Richard,, H., Ramon,: Design of a pressure control system with band time delay.
Reference: [2] A., Atassi,, K., Khalil, H.: A separation principle for the stabilization of a class of nonlinear systems..IEEE Trans. Automat. Control 44 (1999), 1672-1687. Zbl 0958.93079, MR 1709863, 10.1109/9.788534
Reference: [3] A., Atassi,, K., Khalil, H.: Separation results for the stabilization of nonlinear systems using different high-gain observer designs..Systems Control Lett. 39 (2000), 183-191. Zbl 0948.93007, MR 1831258, 10.1016/S0167-6911(99)00085-7
Reference: [4] A., Benabdallah,: A separation principle for the stabilization of a class of time delay nonlinear systems..Kybernetika 51 ( 2015 ), 99-111. MR 3333835, 10.14736/kyb-2015-1-0099
Reference: [5] A., Benabdallah,, N., Echi,: Global exponential stabilisation of a class of nonlinear time-delay systems..Int. J. Systems Sci. 47 (2016), 3857-3863. MR 3512589, 10.1080/00207721.2015.1135356
Reference: [6] A., Benabdallah,, I., Ellouze,, A., Hammami, M.: Practical exponential stability of perturbed triangular systems and separation principle.
Reference: [7] A., Benabdallah,, I., Ellouze,, A., Hammami, M.: Practical stability of nonlinear time-varying cascade systems.
Reference: [8] A., Benabdallah,, T., Kharrat,, C., Vivalda, J.: On practical observers for nonlinear uncertain systems..Systems Control Lett. 57 (2008), 371-377. MR 2405104, 10.14736/kyb-2015-1-0099
Reference: [9] Y., Dong,, X., Wang,, S., Mei,, W., Li,: Exponential stabilization of nonlinear uncertain systems with time-varying delay..J. Engrg. Math. 77 (2012), 225-237. MR 2990665, 10.1007/s10665-012-9554-0
Reference: [10] N., Echi,: Observer design and practical stability of nonlinear systems under unknown time-delay..Asian J. Control (2019). https://doi.org/10.1002/asjc.2271
Reference: [11] N., Echi,, A., Benabdallah,: Delay-dependent stabilization of a class of time-delay nonlinear systems: LMI approach..Adv. Differ. Equ. 271 (2017), 1-13. MR 3695397, 10.1186/s13662-017-1335-7
Reference: [12] N., Echi,, B., Ghanmi,: Global rational stabilization of a class of nonlinear time-delay systems..Arch. Control Sci. 29 (2019), 259-278. MR 4033936, 10.24425/acs.2019.129381
Reference: [13] B., Hamed,, I., Ellouze,, A., Hammami, M.: Practical uniform stability of nonlinear differential delay equation..Mediterr. J. Math. 8 (2011), 603-616. MR 2860688, 10.1007/s00009-010-0083-7
Reference: [14] B., Hamed,, A., Hammami, M.: Practical stabilization of a class of uncertain time-varying nonlinear delay systems..J. Control Theory Appl. 7 (2009), 175-180. MR 2526947, 10.1007/s11768-009-8017-2
Reference: [15] M., Farza,, A., Sboui,, E., Cherrier,, M., M'Saad,: High-gain observer for a class of time-delay nonlinear systems..Int. J. Control 83 (2010), 273-280. MR 2606182, 10.1080/00207170903141069
Reference: [16] A., Germani,, C., Manes,, P., Pepe,: An asymptotic state observer for a class of nonlinear delay systems.
Reference: [17] A., Germani,, C., Manes,, P., Pepe,: Local asymptotic stability for nonlinear state feedback delay systems..Kybernetika 36 (2000), 31-42. Zbl 1249.93146, MR 1760886
Reference: [18] A., Germani,, C., Manes,, P., Pepe,: Observer-based stabilizing control for a class of nonlinear retarded systems..Lect. Notes Control Inform. Sci. 423 (2012), 331-342. Zbl 1298.93287, MR 3050770, 10.1007/978-3-642-25221-1_25
Reference: [19] M., Ghanes,, De, Leon, J., J., Barbot,: Observer design for nonlinear systems under unknown time-varying delays..IEEE Trans. Automat. Control 58 (2013), 1529-1534. MR 3065135, 10.1109/TAC.2012.2225554
Reference: [20] K., Hale, J., V., Lunel, S. M.: Introduction to Functional Differential Equations..Springer, New York 1993. Zbl 0787.34002, MR 1243878
Reference: [21] S., Ibrir,: Observer-based control of a class of time-delay nonlinear systems having triangular structure.
Reference: [22] X., Jia,, X., Chen,, S., Xu,, B., Zhang,, Z., Zhang,: Adaptive output feedback control of nonlinear time-delay systems with application to chemical reactor systems..IEEE Trans. Ind. Electron. 64 (2017), 4792-4799. 10.1109/TIE.2017.2668996
Reference: [23] X., Jia,, S., Xu,, J., Chen,, Z., Li,, Y., Zou,: Global output feedback practical tracking for time-delay systems with uncertain polynomial growth rate..J. Franklin Inst. 352 (2015), 5551-5568. MR 3428380, 10.1016/j.jfranklin.2015.08.012
Reference: [24] X., Jia,, S., Xu,, J., Lu,, Y., Li,, Y., Chu,, Z., Zhang,: Adaptive control for uncertain nonlinear time-delay systems in a lower-triangular form.
Reference: [25] A., Koshkouei,, J., Burnham, K.: Discontinuous observers for non-linear time-delay systems..Int. J. Systems Sci. 40 (2009), 383-392. MR 2510653, 10.1080/00207720802439293
Reference: [26] M., Kwona, O., H., Parkb, J.: Exponential stability of uncertain dynamic systems including state delay.
Reference: [27] C., Lili,, Z., Ying,, Z., Xian,: Guaranteed cost control for uncertain genetic regulatory networks with interval time-varying delays..Neurocomputing 131 (2014), 105-112. 10.1016/j.neucom.2013.10.035
Reference: [28] S., Mondal,, K., Chung, W.: Adaptive observer for a class of nonlinear systems with time-varying delays.
Reference: [29] S., Mondie,, L., Kharitonov, V.: Exponential estimates for retarded time delay systems: an LMI approach..IEEE Trans. Automat. Control 50 (2005), 268-273. MR 2116437, 10.1016/j.jmaa.2014.12.019
Reference: [30] Y., Muroya,, T., Kuniya,, L., Wang, J.: Stability analysis of a delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure..J. Math. Anal. Appl. 425 (2015), 415-439. MR 3299671, doi
Reference: [31] O., Naifar,, Ben, Makhlouf, A., A., Hammami, M., A., Ouali,: On Observer design for a class of nonlinear systems including unknown time-delay..Mediterr. J. Math. 13 (2016), 2841-2851. MR 3554282, 10.1007/s00009-015-0659-3
Reference: [32] P., Pepe,, I., Karafyllis,: Converse Lyapunov-Krasovskii theorems for systems described by neutral functional differential equations in Hales form..Int. J. Control 86 (2013), 232-243. MR 3017700, 10.1080/00207179.2012.723137
Reference: [33] A., Rapaport,, L., Gouze, J.: Parallelotopic and practical observers for non-linear uncertain systems..Int. J. Control 76 (2003), 237-251. MR 1984076, 10.1080/0020717031000067457
Reference: [34] R., Villafuerte,, S., Mondie,, A., Poznyak,: Practical stability of time-delay systems: LMI's approach..Eur. J. Control 2 (2011), 127-138. MR 2839109, 10.3166/ejc.17.127-138
.

Files

Files Size Format View
Kybernetika_55-2019-6_7.pdf 679.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo