Previous |  Up |  Next

Article

Title: A novel LMI-based robust model predictive control for DFIG-based wind energy conversion systems (English)
Author: Gholami, Amir
Author: Sahab, Alireza
Author: Tavakoli, Abdolreza
Author: Alizadeh, Behnam
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 6
Year: 2019
Pages: 1034-1049
Summary lang: English
.
Category: math
.
Summary: The optimal and reliable performance of doubly fed induction generator is essential for the efficient and optimal operation of wind energy conversion systems. This paper considers the nonlinear dynamic of a DFIG linked to a power grid and presents a new robust model predictive control technique of active and reactive power by the use of the linear matrix inequality in DFIG-based WECS. The control law is obtained through the LMI-based model predictive control that allows considering both economic and tracking factors by optimization of an objective function, constraints on control signal and states of system and effects of nonlinearities, generator parameter uncertainties and external disturbances. Robust stability in the face of bounded disturbances and generator uncertainty is shown using Lyapunov technique. Numerical simulations show that the proposed control method is able to meet the desired specification in active and reactive power control in the presence of varieties of wind speed and pitch angle. (English)
Keyword: linear matrix inequality
Keyword: robust model predictive control
Keyword: doubly fed induction generator
Keyword: active and reactive power
Keyword: optimization
MSC: 37N35
MSC: 93C10
MSC: 93C40
MSC: 93C42
MSC: 93D09
idZBL: Zbl 07217225
idMR: MR4077143
DOI: 10.14736/kyb-2019-6-1034
.
Date available: 2020-05-20T15:19:22Z
Last updated: 2020-08-26
Stable URL: http://hdl.handle.net/10338.dmlcz/148090
.
Reference: [1] S., Boyd,, L., Ghaui,, E., Feron,, V., Balakrishnan,: Linear Matrix Inequalities in Control Theory..SIAM, Philadelphia 1994. 10.1137/1.9781611970777
Reference: [2] P., Campo,, M., Morari,: Robust model predictive control..In: Proc. American Control Conference, Minneapolis 1987.
Reference: [3] S., Chondrogiannis,, M., Barnes,: Stability of doubly-fed induction generator under stator voltage orientated vector control..IET Renew. Power Gener. 2 (2008), 170-180. 10.1049/iet-rpg:20070086
Reference: [4] M., Depenbrock,: Direct self-control (DSC) of inverter-fed induction machine..IEEE Trans. Power Electron. 3 (1988), 420-429. 10.1109/63.17963
Reference: [5] J., Dong,, S., Li,, S., Wu,, T., He,, B., Yang,, H., Shu,, J., Yu,: Nonlinear observer-based robust passive control of doubly-fed induction generators for power system stability enhancement via energy reshaping..Energies 10 (2017), 8, 1082. 10.3390/en10081082
Reference: [6] M., Duong,, F., Grimaccia,, S., Leva,, M., Mussetta,, E., Ogliari,: Pitch angle control using hybrid controller for all operating regions of SCIG wind turbine system..Renew. Energy 70 (2014), 197-203. 10.1016/j.renene.2014.03.072
Reference: [7] M., Fei,, B., Pal,: Modal analysis of grid-connected doubly fed induction generators..IEEE Trans. Energy Convers 22 (2007), 728-736. 10.1109/tec.2006.881080
Reference: [8] V., Ghaffari,, Vahid, Naghavi, S., A., Safavi, A., M., Shafiee,: An LMI framework to design robust MPC for a class of nonlinear uncertain systems..In: Control Conference (ASCC), Asian 2013. 10.1109/ascc.2013.6606169
Reference: [9] S., Hao,, E., Abdi,, F., Barati,, R., McMahon,: Stator-flux-oriented vector control for brushless doubly fed induction generator..IEEE Trans. Ind. Electron. 56 (2009), 4220-4228. 10.1109/tie.2009.2024660
Reference: [10] B., Hopfensperger,, D., Atkinson,, R., Lakin,: Stator-flux-oriented control of a doubly-fed induction machine with and without position encoder..IEE Proc. Electr. Power Appl. 147 (2000), 241-250. 10.1049/ip-epa:20000442
Reference: [11] J., Hu,, Y., He,, L., Xu,, B., Williams,: Improved control of DFIG systems during network unbalance using PI-R current regulators..IEEE Trans. Ind. Electron. 56 (2009), 439-451. 10.1109/tie.2008.2006952
Reference: [12] J., Hu,, J., Zhu,, D., Dorrell,: Model-predictive direct power control of doubly-fed induction generators under unbalanced grid voltage conditions in wind energy applications..IET Renew. Power Gener. 8 (2014), 687-695. 10.1049/iet-rpg.2013.0312
Reference: [13] M., Kothare,, V., Balakrishnan,, M., Morari,: Robust constrained model predictive control using linear matrix inequalities..Automatica 32 (1996), 10, 1361-1379. MR 1420038, 10.1016/0005-1098(96)00063-5
Reference: [14] M., Liserre,, R., Cardenas,, M., Molinas,, J., Rodriguez,: Overview of multi-MW wind turbines and wind parks..IEEE Trans. Ind. Electron. 58 (2011), 4, 1081-1095. 10.1109/tie.2010.2103910
Reference: [15] Y., Lu,, Y., Arkun,: Quasi-min-max MPC algorithms for LPV systems..Automatica 36 (2000), 4, 527-540. MR 1828899, 10.1016/s0005-1098(99)00176-4
Reference: [16] R., Pena,, J., Clare,, G., Asher,: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation..IEE Proc. Electr. Power Appl. 143 (1996), 231-241. 10.1049/ip-epa:19960288
Reference: [17] N., Poursafar,, H., Taghirad,, M., Haeri,: Model predictive control of nonlinear discrete time systems: a linear matrix inequality approach..IET Proc. Control Theory Appl. 4 (2010), 1922-1932. MR 2760324, 10.1049/iet-cta.2009.0650
Reference: [18] W., Qiao,: Dynamic modeling and control of doubly fed induction generators driven by wind turbines..In: Proc. IEEE/PES Power Systems Conference and Exposition, Seattle 2009. 10.1109/psce.2009.4840245
Reference: [19] X., Sun,, B., Zhang,, X., Tang,, B., McLellan,, M., Höök,: Sustainable energy transitions in China: Renewable..Energies 9 (2016), 980. 10.3390/en9120980
Reference: [20] F., Tahir,, M., Jaimoukha, I.: Robust model predictive control through dynamic state-feedback: An LMI approach..IFAC Proc. Vol. 40 (2011), 1, 3672-3677. 10.3182/20110828-6-it-1002.03112
Reference: [21] I., Takahashi,, T., Noguchi,: A new quick-response and high-efficiency control strategy of an induction motor..IEEE Trans. Ind. Appl. (1986), 820-827. 10.1109/tia.1986.4504799
Reference: [22] B., Yang,, L., Jiang,, L., Wang,, W., Yao,, Q., Wu,: Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine..Int. J. Electr. Power Energy Syst. 74 (2016), 429-436. 10.1016/j.ijepes.2015.07.036
Reference: [23] B., Yang,, X., Zhang,, T., Yu,, H., Shu,, Z., Fang,: Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine..Energy Convers. Manag. 133 (2017), 427-443. 10.1016/j.enconman.2016.10.062
Reference: [24] W., Yao,, J., Lin,, W., Jinyu,, W., Qinghua,, C., Shijie,: Wide-area damping controller for power system inter-area oscillations: A networked predictive control approach..IEEE Trans. Control Syst. Technol. 23 (2015), 27-37. 10.1109/tcst.2014.2311852
Reference: [25] S.-Y., Yu,, C., Bohm,, H., Chen,, F., Allgower,: Robust model predictive control with disturbance invariant sets..In: Proc. Amer. Contr. Conf., Baltimore 2010. 10.1109/acc.2010.5531520
Reference: [26] D., Zhi,, L., Xu,: Direct power control of DFIG with constant switching frequency and improved transient performance..IEEE Trans. Energy Convers. 22 (2007), 110-118. 10.1109/tec.2006.889549
Reference: [27] D., Zhi,, L., Xu,, B., Williams,: Model-based predictive direct power control of doubly fed induction generators..IEEE Trans. Power Electron. 25 (2010), 341-351. 10.1109/tpel.2009.2028139
.

Files

Files Size Format View
Kybernetika_55-2019-6_8.pdf 1.418Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo