Previous |  Up |  Next

Article

Title: Domain decomposition methods coupled with parareal for the transient heat equation in 1 and 2 spatial dimensions (English)
Author: Foltyn, Ladislav
Author: Lukáš, Dalibor
Author: Peterek, Ivo
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 2
Year: 2020
Pages: 173-190
Summary lang: English
.
Category: math
.
Summary: We present a parallel solution algorithm for the transient heat equation in one and two spatial dimensions. The problem is discretized in space by the lowest-order conforming finite element method. Further, a one-step time integration scheme is used for the numerical solution of the arising system of ordinary differential equations. For the latter, the parareal method decomposing the time interval into subintervals is employed. It leads to parallel solution of smaller time-dependent problems. At each time slice a pseudo-stationary elliptic heat equation is solved by means of a domain decomposition method (DDM). In the $2d$, case we employ a nonoverlapping Schur complement method, while in the $1d$ case an overlapping Schwarz DDM is employed. We document computational efficiency, as well as theoretical convergence rates of FEM semi-discretization schemes on numerical examples. (English)
Keyword: domain decomposition method
Keyword: parareal method
Keyword: finite element method
Keyword: heat equation
MSC: 65F08
MSC: 65N30
MSC: 65N55
idZBL: 07217104
idMR: MR4083463
DOI: 10.21136/AM.2020.0219-19
.
Date available: 2020-05-20T15:45:38Z
Last updated: 2022-05-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148108
.
Reference: [1] Bramble, J. H., Pasciak, J. E., Schatz, A. H.: The construction of preconditioners for elliptic problems by substructuring. I.Math. Comput. 47 (1986), 103-134. Zbl 0615.65112, MR 0842125, 10.2307/2008084
Reference: [2] Dai, X., Maday, Y.: Stable parareal in time method for first- and second-order hyperbolic systems.SIAM J. Sci. Comput. 35 (2013), A52--A78. Zbl 1264.65136, MR 3033060, 10.1137/110861002
Reference: [3] Falgout, R. D., Friedhoff, S., Kolev, T. V., MacLachlan, S. P., Schroder, J. B.: Parallel time integration with multigrid.SIAM J. Sci. Comput. 36 (2014), C635--C661. Zbl 1310.65115, MR 3499068, 10.1137/130944230
Reference: [4] Farhat, C., Chandesris, M.: Time-decomposed parallel time-integrators: theory and feasibility studies for fluid, structure, and fluid-structure applications.Int. J. Numer. Methods Eng. 58 (2003), 1397-1434. Zbl 1032.74701, MR 2012613, 10.1002/nme.860
Reference: [5] Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm.Int. J. Numer. Methods Eng. 32 (1991), 1205-1227. Zbl 0758.65075, MR 3618550, 10.1002/nme.1620320604
Reference: [6] Gander, M. J.: 50 years of time parallel time integration.Multiple Shooting and Time Domain Decomposition Methods T. Carraro et al. Contribibutions Mathematical and Computational Sciences 9, Springer, Cham (2015), 69-113. Zbl 1337.65127, MR 3676210, 10.1007/978-3-319-23321-5_3
Reference: [7] Gander, M. J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation.SIAM J. Numer. Anal. 41 (2003), 1643-1681. Zbl 1085.65077, MR 2035001, 10.1137/S003614290139559X
Reference: [8] Gander, M. J., Jiang, Y.-L., Li, R.-J.: Parareal Schwarz waveform relaxation methods.Domain Decomposition Methods in Science and Engineering XX R. Bank et al. Lectures Notes in Computational Science and Engineering 91, Springer, Berlin (2013), 451-458. Zbl 1416.65007, MR 3243021, 10.1007/978-3-642-35275-1_53
Reference: [9] Gander, M. J., Kwok, F., Mandal, B. C.: Dirichlet-Neumann and Neumann-Neumann waveform relaxation algorithms for parabolic problems.ETNA, Electron. Trans. Numer. Anal. 45 (2016), 424-456. Zbl 1355.65128, MR 3582894
Reference: [10] Gander, M. J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems.SIAM J. Sci. Comput. 38 (2016), A2173--A2208. Zbl 1342.65225, MR 3521549, 10.1137/15M1046605
Reference: [11] Gander, M. J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method.SIAM J. Sci. Comput. 29 (2007), 556-578. Zbl 1141.65064, MR 2306258, 10.1137/05064607X
Reference: [12] Gander, M. J., Vandewalle, S.: On the superlinear and linear convergence of the parareal algorithm.Domain Decomposition Methods in Science and Engineering XVI O. B. Widlund et al. Lectures Notes in Computational Science and Engineering 55, Springer, Berlin (2007), 291-298. Zbl 1104.74004, MR 2334115, 10.1007/978-3-540-34469-8_34
Reference: [13] Lions, J.-L., Maday, Y., Turinici, G.: Résolution d'EDP par un schéma en temps ``pararéel''.C. R. Acad. Sci., Paris, Sér. I, Math. 332 (2001), 661-668 French. Zbl 0984.65085, MR 1842465, 10.1016/S0764-4442(00)01793-6
Reference: [14] Lukáš, D., Bouchala, J., Vodstrčil, P., Malý, L.: 2-dimensional primal domain decomposition theory in detail.Appl. Math., Praha 60 (2015), 265-283. Zbl 1363.65215, MR 3419962, 10.1007/s10492-015-0095-5
Reference: [15] Maday, Y.: The `parareal in time' algorithm.Substructuring Techniques and Domain Decomposition Methods F. Magoulès Computational Science, Engineering and Technology Series 24, Saxe-Coburg Publications, Stirling (2010), 19-44. 10.4203/csets.24.2
Reference: [16] Maday, Y., Turinici, G.: The parareal in time iterative solver: a further direction to parallel implementation.Domain Decomposition Methods in Science and Engineering T. J. Barth et al. Lectures Notes in Computational Science and Engineering 40, Springer, Berlin (2005), 441-448. Zbl 1067.65102, MR 2235771, 10.1007/3-540-26825-1_45
Reference: [17] Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients.Math. Comput. 65 (1996), 1387-1401. Zbl 0853.65129, MR 1351204, 10.1090/S0025-5718-96-00757-0
Reference: [18] Mercerat, D., Guillot, L., Vilotte, J.-P.: Application of the parareal algorithm for acoustic wave propagation.AIP Conf. Proc. 1168 (2009), 1521-1524. 10.1063/1.3241388
Reference: [19] Neumüller, M.: Space-Time Methods: Fast Solvers and Applications.Monographic Series, Graz University of Technology, Graz (2013).
Reference: [20] Schöps, S., Niyonzima, I., Clemens, M.: Parallel-in-time simulation of eddy current problems using parareal.IEEE Trans. Magn. 54 (2018), Article No. 7200604, 1-4. 10.1109/tmag.2017.2763090
Reference: [21] Smith, B. F., Bjørstad, P. E., Gropp, W. D.: Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations.Cambridge University Press, Cambridge (1996). Zbl 0857.65126, MR 1410757
Reference: [22] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems.Springer Series in Computational Mathematics 25, Springer, Berlin (2006). Zbl 1105.65102, MR 2249024, 10.1007/3-540-33122-0
Reference: [23] Toselli, A., Widlund, O.: Domain Decomposition Methods---Algorithms and Theory.Springer Series in Computational Mathematics 34, Springer, Berlin (2005). Zbl 1069.65138, MR 2104179, 10.1007/b137868
Reference: [24] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators.Springer, New York (1990). Zbl 0684.47028, MR 1033497, 10.1007/978-1-4612-0985-0
.

Files

Files Size Format View
AplMat_65-2020-2_4.pdf 359.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo