Previous |  Up |  Next

Article

Title: A comparison of approaches for the construction of reduced basis for stochastic Galerkin matrix equations (English)
Author: Béreš, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 2
Year: 2020
Pages: 191-225
Summary lang: English
.
Category: math
.
Summary: We examine different approaches to an efficient solution of the stochastic Galerkin (SG) matrix equations coming from the Darcy flow problem with different, uncertain coefficients in apriori known subdomains. The solution of the SG system of equations is usually a very challenging task. A relatively new approach to the solution of the SG matrix equations is the reduced basis (RB) solver, which looks for a low-rank representation of the solution. The construction of the RB is usually done iteratively and consists of multiple solutions of systems of equations. We examine multiple approaches and their modifications to the construction of the RB, namely the reduced rational Krylov subspace method and Monte Carlo sampling approach. We also aim at speeding up the process using the deflated conjugate gradients (DCG). We test and compare these methods on a set of problems with a varying random behavior of the material on subdomains as well as different geometries of subdomains. (English)
Keyword: stochastic Galerkin method
Keyword: reduced basis method
Keyword: deflated conjugate gradients method
Keyword: Darcy flow problem
MSC: 60-08
MSC: 65C05
MSC: 86-08
idZBL: 07217105
idMR: MR4083464
DOI: 10.21136/AM.2020.0257-19
.
Date available: 2020-05-20T15:46:39Z
Last updated: 2022-05-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148109
.
Reference: [1] Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data.SIAM J. Numer. Anal. 45 (2007), 1005-1034. Zbl 1151.65008, MR 2318799, 10.1137/050645142
Reference: [2] Babuška, I., Tempone, R., Zouraris, G. E.: Galerkin finite element approximations of stochastic elliptic partial differential equations.SIAM J. Numer. Anal. 42 (2004), 800-825. Zbl 1080.65003, MR 2084236, 10.1137/S0036142902418680
Reference: [3] Ballani, J., Grasedyck, L.: A projection method to solve linear systems in tensor format.Numer. Linear Algebra Appl. 20 (2013), 27-43. Zbl 1289.65049, MR 3007237, 10.1002/nla.1818
Reference: [4] Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients.Numer. Math. 119 (2011), 123-161. Zbl 1230.65006, MR 2824857, 10.1007/s00211-011-0377-0
Reference: [5] Benner, P., Onwunta, A., Stoll, M.: Low-rank solution of unsteady diffusion equations with stochastic coefficients.SIAM/ASA J. Uncertain. Quantif. 3 (2015), 622-649. Zbl 1325.65016, MR 3376791, 10.1137/130937251
Reference: [6] Béreš, M.: An efficient reduced basis construction for stochastic Galerkin matrix equations using deflated conjugate gradients.AETA 2018-Recent Advances in Electrical Engineering and Related Sciences: Theory and Application I. Zelinka et al. Lecture Notes in Electrical Engineering 554, Springer, Cham (2019), 175-184. 10.1007/978-3-030-14907-9_18
Reference: [7] Béreš, M., Domesová, S.: The stochastic Galerkin method for Darcy flow problem with log-normal random field coefficients.Advances in Electrical and Electronic Engineering 15 (2017), 13 pages. 10.15598/aeee.v15i2.2280
Reference: [8] Bespalov, A., Powell, C. E., Silvester, D.: Energy norm a posteriori error estimation for parametric operator equations.SIAM J. Sci. Comput. 36 (2014), A339--A363. Zbl 1294.35199, MR 3177362, 10.1137/130916849
Reference: [9] Bespalov, A., Silvester, D.: Efficient adaptive stochastic Galerkin methods for parametric operator equations.SIAM J. Sci. Comput. 38 (2016), A2118--A2140. Zbl 1416.65435, MR 3519560, 10.1137/15M1027048
Reference: [10] Caflisch, R. E.: Monte Carlo and quasi-Monte Carlo methods.Acta Numerica 7 (1998), 1-49. Zbl 0949.65003, MR 1689431, 10.1017/S0962492900002804
Reference: [11] Chen, C. S., Hon, Y. C., Schaback, R. A.: Scientific Computing with Radial Basis Functions.Department of Mathematics, University of Southern Mississippi, Hattiesburg (2005).
Reference: [12] Chen, Y., Jiang, J., Narayan, A.: A robust error estimator and a residual-free error indicator for reduced basis methods.Comput. Math. Appl. 77 (2019), 1963-1979. MR 3926856, 10.1016/j.camwa.2018.11.032
Reference: [13] Chen, P., Quarteroni, A., Rozza, G.: Comparison between reduced basis and stochastic collocation methods for elliptic problems.J. Sci. Comput. 59 (2014), 187-216. Zbl 1301.65007, MR 3167732, 10.1007/s10915-013-9764-2
Reference: [14] Chen, P., Quarteroni, A., Rozza, G.: Reduced basis methods for uncertainty quantification.SIAM/ASA J. Uncertain. Quantif. 5 (2017), 813-869. Zbl 1400.65010, MR 3687858, 10.1137/151004550
Reference: [15] Christakos, G.: Random Field Models in Earth Sciences.Academic Press, San Diego (1992). 10.1016/C2009-0-22238-0
Reference: [16] Cliffe, K. A., Giles, M. B., Scheichl, R., Teckentrup, A. L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients.Comput. Vis. Sci. 14 (2011), 3-15. Zbl 1241.65012, MR 2835612, 10.1007/s00791-011-0160-x
Reference: [17] Crowder, A. J., Powell, C. E.: CBS constants & their role in error estimation for stochastic Galerkin finite element methods.J. Sci. Comput. 77 (2018), 1030-1054. Zbl 1404.65257, MR 3860199, 10.1007/s10915-018-0736-4
Reference: [18] Dolgov, S., Khoromskij, B. N., Litvinenko, A., Matthies, H. G.: Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format.SIAM/ASA J. Uncertain. Quantif. 3 (2015), 1109-1135. Zbl 1329.65271, MR 3418232, 10.1137/140972536
Reference: [19] Elman, H. C., Su, T.: A low-rank multigrid method for the stochastic steady-state diffusion problem.SIAM J. Matrix Anal. Appl. 39 (2018), 492-509. Zbl 1390.35437, MR 3775135, 10.1137/17M1125170
Reference: [20] Freeze, R. A.: A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media.Water Resources Research 11 (1975), 725-741. 10.1029/WR011i005p00725
Reference: [21] Gittelson, C. J.: Stochastic Galerkin discretization of the log-normal isotropic diffusion problem.Math. Models Methods Appl. Sci. 20 (2010), 237-263. Zbl 1339.65216, MR 2649152, 10.1142/S0218202510004210
Reference: [22] Güttel, S.: Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection.GAMM-Mitt. 36 (2013), 8-31. Zbl 1292.65043, MR 3095912, 10.1002/gamm.201310002
Reference: [23] Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids.J. Econom. 144 (2008), 62-80. Zbl 1418.62466, MR 2439922, 10.1016/j.jeconom.2007.12.004
Reference: [24] Hoeksema, R. J., Kitanidis, P. K.: Analysis of the spatial structure of properties of selected aquifers.Water Resources Research 21 (1985), 563-572. 10.1029/WR021i004p00563
Reference: [25] Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs.SIAM J. Sci. Comput. 20 (1998), 359-392. Zbl 0915.68129, MR 1639073, 10.1137/S1064827595287997
Reference: [26] Keese, A., Mathhies, H. G.: Adaptivity and sensitivity for stochastic problems.Computational Stochastic Mechanics 4 P. D. Spanos et al. Millpress, Rotterdam (2003), 311-316.
Reference: [27] Khoromskij, B. N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs.SIAM J. Sci. Comput. 33 (2011), 364-385. Zbl 1243.65009, MR 2783199, 10.1137/100785715
Reference: [28] Kroese, D. P., Taimre, T., Botev, Z. I.: Handbook for Monte Carlo Methods.Wiley Series in Probability and Statistics, Wiley, Hoboken (2011). Zbl 1213.65001, 10.1002/9781118014967
Reference: [29] Lee, K., Elman, H. C.: A preconditioned low-rank projection method with a rank-reduction scheme for stochastic partial differential equations.SIAM J. Sci. Comput. 39 (2017), S828--S850. Zbl 1373.60126, MR 3716585, 10.1137/16M1075582
Reference: [30] Lord, G. J., Powell, C. E., Shardlow, T.: An Introduction to Computational Stochastic PDEs.Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2014). Zbl 1327.60011, MR 3308418, 10.1017/CBO9781139017329
Reference: [31] Mathelin, L., tre, O. Le Maî: Dual-based a posteriori error estimate for stochastic finite element methods.Commun. Appl. Math. Comput. Sci. 2 (2007), 83-115. Zbl 1131.65003, MR 2369381, 10.2140/camcos.2007.2.83
Reference: [32] Matthies, H. G., Zander, E.: Solving stochastic systems with low-rank tensor compression.Linear Algebra Appl. 436 (2012), 3819-3838. Zbl 1241.65016, MR 2914549, 10.1016/j.laa.2011.04.017
Reference: [33] Nelson, P. H.: Permeability-porosity relationships in sedimentary rocks.Log Analyst 35 (1994), 38-62.
Reference: [34] Newsum, C. J., Powell, C. E.: Efficient reduced basis methods for saddle point problems with applications in groundwater flow.SIAM/ASA J. Uncertain. Quantif. 5 (2017), 1248-1278. Zbl 1398.65282, MR 3732952, 10.1137/16M1108856
Reference: [35] Nobile, F., Tempone, R., Webster, C. G.: A sparse grid stochastic collocation method for partial differential equations with random input data.SIAM J. Numer. Anal. 46 (2008), 2309-2345. Zbl 1176.65137, MR 2421037, 10.1137/060663660
Reference: [36] Nouy, A.: A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations.Comput. Methods Appl. Mech. Eng. 196 (2007), 4521-4537. Zbl 1173.80311, MR 2354451, 10.1016/j.cma.2007.05.016
Reference: [37] Nouy, A.: Construction of generalized spectral bases for the approximate resolution of stochastic problems.Mecanique et Industries 8 (2007), 283-288. 10.1051/meca:2007050
Reference: [38] Nouy, A.: Generalized spectral decomposition method for solving stochastic finite element equations: Invariant subspace problem and dedicated algorithms.Comput. Methods Appl. Mech. Eng. 197 (2008), 4718-4736. Zbl 1194.74458, MR 2464512, 10.1016/j.cma.2008.06.012
Reference: [39] Nouy, A.: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations.Arch. Comput. Methods Eng. 16 (2009), 251-285. Zbl 1360.65036, MR 2533492, 10.1007/s11831-009-9034-5
Reference: [40] Nouy, A.: Proper generalized decompositions and separated representations for the numerical solution of high dimensional stochastic problems.Arch. Comput. Methods Eng. 17 (2010), 403-434. Zbl 1269.76079, MR 2739946, 10.1007/s11831-010-9054-1
Reference: [41] Nouy, A., Maitre, O. P. Le: Generalized spectral decomposition for stochastic nonlinear problems.J. Comput. Phys. 228 (2009), 202-235. Zbl 1157.65009, MR 2464076, 10.1016/j.jcp.2008.09.010
Reference: [42] Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimension.Numer. Math. 93 (2003), 729-753. Zbl 1024.65023, MR 1961886, 10.1007/s002110200401
Reference: [43] Powell, M. J. D.: Radial basis function methods for interpolation to functions of many variables.HERCMA 2001. Proceedings of the 5th Hellenic-European Conference on Computer Mathematics and Its Applications E. A. Lipitakis LEA, Athens (2002), 2-24. Zbl 1048.65502
Reference: [44] Powell, C. E., Elman, H. C.: Block-diagonal preconditioning for spectral stochastic finite-element systems.IMA J. Numer. Anal. 29 (2009), 350-375. Zbl 1169.65007, MR 2491431, 10.1093/imanum/drn014
Reference: [45] Powell, C. E., Silvester, D., Simoncini, V.: An efficient reduced basis solver for stochastic Galerkin matrix equations.SIAM J. Sci. Comput. 39 (2017), A141--A163. Zbl 1381.35257, MR 3594329, 10.1137/15M1032399
Reference: [46] Pultarová, I.: Adaptive algorithm for stochastic Galerkin method.Appl. Math., Praha 60 (2015), 551-571. Zbl 1363.65005, MR 3396480, 10.1007/s10492-015-0111-9
Reference: [47] Pultarová, I.: Hierarchical preconditioning for the stochastic Galerkin method: Upper bounds to the strengthened CBS constants.Comput. Math. Appl. 71 (2016), 949-964. MR 3461271, 10.1016/j.camwa.2016.01.006
Reference: [48] Robert, C. P., Casella, G.: Monte Carlo Statistical Methods.Springer Texts in Statistics, Springer, New York (2004). Zbl 1096.62003, MR 2080278, 10.1007/978-1-4757-4145-2
Reference: [49] Saad, Y., Yeung, M., Erhel, J., Guyomarc'h, F.: A deflated version of the conjugate gradient algorithm.SIAM J. Sci. Comput. 21 (2000), 1909-1926. Zbl 0955.65021, MR 1766015, 10.1137/S1064829598339761
Reference: [50] Santner, T. J., Williams, B. J., Notz, W. I.: The Design and Analysis of Computer Experiments.Springer Series in Statistics, Springer, New York (2003). Zbl 1041.62068, MR 2160708, 10.1007/978-1-4757-3799-8
Reference: [51] Simoncini, V.: Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations.SIAM J. Matrix Anal. Appl. 37 (2016), 1655-1674. Zbl 06655499, MR 3570279, 10.1137/16M1059382
Reference: [52] Sousedík, B., Ghanem, R. G., Phipps, E. T.: Hierarchical Schur complement preconditioner for the stochastic Galerkin finite element methods.Numer. Linear Algebra Appl. 21 (2014), 136-151. Zbl 1324.65045, MR 3150614, 10.1002/nla.1869
Reference: [53] Ullmann, E.: A Kronecker product preconditioner for stochastic Galerkin finite element discretizations.SIAM J. Sci. Comput. 32 (2010), 923-946. Zbl 1210.35306, MR 2639600, 10.1137/080742853
Reference: [54] Ullmann, S., Lang, J.: Stochastic Galerkin reduced basis methods for parametrized linear elliptic PDEs.Available at https://arxiv.org/abs/1812.08519 (2018), 20 pages.
Reference: [55] Wan, X., Karniadakis, G. E.: An adaptive multi-element generalized polynomial chaos method for stochastic differential equations.J. Comput. Phys. 209 (2005), 617-642. Zbl 1078.65008, MR 2151997, 10.1016/j.jcp.2005.03.023
Reference: [56] Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach.Princeton University Press, Princeton (2010). Zbl 1210.65002, MR 2723020, 10.1515/9781400835348
.

Files

Files Size Format View
AplMat_65-2020-2_5.pdf 825.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo