Title:
|
Maximal non $\lambda $-subrings (English) |
Author:
|
Kumar, Rahul |
Author:
|
Gaur, Atul |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
70 |
Issue:
|
2 |
Year:
|
2020 |
Pages:
|
323-337 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a commutative ring with unity. The notion of maximal non $\lambda $-subrings is introduced and studied. A ring $R$ is called a maximal non $\lambda $-subring of a ring $T$ if $R\subset T$ is not a $\lambda $-extension, and for any ring $S$ such that $R\subset S\subseteq T$, $S\subseteq T$ is a $\lambda $-extension. We show that a maximal non $\lambda $-subring $R$ of a field has at most two maximal ideals, and exactly two if $R$ is integrally closed in the given field. A determination of when the classical $D + M$ construction is a maximal non $\lambda $-domain is given. A necessary condition is given for decomposable rings to have a field which is a maximal non $\lambda $-subring. If $R$ is a maximal non $\lambda $-subring of a field $K$, where $R$ is integrally closed in $K$, then $K$ is the quotient field of $R$ and $R$ is a Prüfer domain. The equivalence of a maximal non $\lambda $-domain and a maximal non valuation subring of a field is established under some conditions. We also discuss the number of overrings, chains of overrings, and the Krull dimension of maximal non $\lambda $-subrings of a field. (English) |
Keyword:
|
maximal non $\lambda $-subring |
Keyword:
|
$\lambda $-extension |
Keyword:
|
integrally closed extension |
Keyword:
|
valuation domain |
MSC:
|
13A18 |
MSC:
|
13B02 |
MSC:
|
13B22 |
idZBL:
|
07217138 |
idMR:
|
MR4111846 |
DOI:
|
10.21136/CMJ.2019.0298-18 |
. |
Date available:
|
2020-06-17T12:30:54Z |
Last updated:
|
2022-07-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148232 |
. |
Reference:
|
[1] Ayache, A., Jaballah, A.: Residually algebraic pairs of rings.Math. Z. 225 (1997), 49-65. Zbl 0868.13007, MR 1451331, 10.1007/PL00004598 |
Reference:
|
[2] Azarang, A.: On maximal subrings.Far East J. Math. Sci. 32 (2009), 107-118. Zbl 1164.13004, MR 2526909 |
Reference:
|
[3] Azarang, A., Karamzadeh, O. A. S.: On the existence of maximal subrings in commutative Artinian rings.J. Algebra Appl. 9 (2010), 771-778. Zbl 1204.13008, MR 2726553, 10.1142/S0219498810004208 |
Reference:
|
[4] Azarang, A., Oman, G.: Commutative rings with infinitely many maximal subrings.J. Algebra Appl. 13 (2014), Article ID 1450037, 29 pages. Zbl 1308.13012, MR 3200115, 10.1142/S0219498814500376 |
Reference:
|
[5] Badawi, A.: On 2-absorbing ideals of commutative rings.Bull. Aust. Math. Soc. 75 (2007), 417-429. Zbl 1120.13004, MR 2331019, 10.1017/S0004972700039344 |
Reference:
|
[6] Bastida, E., Gilmer, R.: Overrings and divisorial ideals of rings of the form $D+M$.Mich. Math. J. 20 (1973), 79-95. Zbl 0239.13001, MR 0323782, 10.1307/mmj/1029001014 |
Reference:
|
[7] Nasr, M. Ben, Jarboui, N.: On maximal non-valuation subrings.Houston J. Math. 37 (2011), 47-59. Zbl 1222.13007, MR 2786545 |
Reference:
|
[8] Davis, D. E.: Overrings of commutative rings III: Normal pairs.Trans. Am. Math. Soc. 182 (1973), 175-185. Zbl 0272.13004, MR 0325599, 10.1090/S0002-9947-1973-0325599-3 |
Reference:
|
[9] Dobbs, D. E.: On INC-extensions and polynomials with unit content.Can. Math. Bull. 23 (1980), 37-42. Zbl 0432.13007, MR 0573556, 10.4153/CMB-1980-005-8 |
Reference:
|
[10] Dobbs, D. E., Picavet, G., Picavet-L'Hermitte, M.: Characterizing the ring extensions that satisfy FIP or FCP.J. Algebra 371 (2012), 391-429. Zbl 1271.13022, MR 2975403, 10.1016/j.jalgebra.2012.07.055 |
Reference:
|
[11] Dobbs, D. E., Shapiro, J.: Normal pairs with zero-divisors.J. Algebra Appl. 10 (2011), 335-356. Zbl 1221.13012, MR 2795742, 10.1142/S0219498811004628 |
Reference:
|
[12] E. G. Evans, Jr.: A generalization of Zariski's main theorem.Proc. Am. Math. Soc. 26 (1970), 45-48. Zbl 0198.06001, MR 0260716, 10.1090/S0002-9939-1970-0260716-8 |
Reference:
|
[13] Gilbert, M. S.: Extensions of Commutative Rings with Linearly Ordered Intermediate Rings. PhD Thesis.University of Tennessee, Knoxville (1996), Available at https://search.proquest.com/docview/304271872?accountid=8179. MR 2695057 |
Reference:
|
[14] R. W. Gilmer, Jr.: Overrings of Prüfer domains.J. Algebra 4 (1966), 331-340. Zbl 0146.26205, MR 0202749, 10.1016/0021-8693(66)90025-1 |
Reference:
|
[15] Gilmer, R.: Some finiteness conditions on the set of overrings of an integral domain.Proc. Am. Math. Soc. 131 (2003), 2337-2346. Zbl 1017.13009, MR 1974630, 10.1090/S0002-9939-02-06816-8 |
Reference:
|
[16] R. W. Gilmer, Jr., J. F. Hoffmann: A characterization of Prüfer domains in terms of polynomials.Pac. J. Math. 60 (1975), 81-85. Zbl 0307.13011, MR 0412175, 10.2140/pjm.1975.60.81 |
Reference:
|
[17] Jaballah, A.: Maximal non-Prüfer and maximal non-integrally closed subrings of a field.J. Algebra Appl. 11 (2012), Article ID 1250041, 18 pages. Zbl 1259.13004, MR 2983173, 10.1142/S0219498811005658 |
Reference:
|
[18] Kaplansky, I.: Commutative Rings.University of Chicago Press, Chicago (1974). Zbl 0296.13001, MR 0345945 |
Reference:
|
[19] Kumar, R., Gaur, A.: On $\lambda$-extensions of commutative rings.J. Algebra Appl. 17 (2018), Article ID 1850063, 9 pages. Zbl 1395.13006, MR 3786742, 10.1142/S0219498818500639 |
Reference:
|
[20] Papick, I. J.: Topologically defined classes of going-down domains.Trans. Am. Math. Soc. 219 (1976), 1-37. Zbl 0345.13005, MR 0401745, 10.1090/S0002-9947-1976-0401745-0 |
. |