Previous |  Up |  Next

Article

Title: A unified analysis of elliptic problems with various boundary conditions and their approximation (English)
Author: Droniou, Jérôme
Author: Eymard, Robert
Author: Gallouët, Thierry
Author: Herbin, Raphaèle
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 339-368
Summary lang: English
.
Category: math
.
Summary: We design an abstract setting for the approximation in Banach spaces of operators acting in duality. A typical example are the gradient and divergence operators in Lebesgue-Sobolev spaces on a bounded domain. We apply this abstract setting to the numerical approximation of Leray-Lions type problems, which include in particular linear diffusion. The main interest of the abstract setting is to provide a unified convergence analysis that simultaneously covers (i) all usual boundary conditions, (ii) several approximation methods. The considered approximations can be conforming (that is, the approximation functions can belong to the energy space relative to the problem) or not, and include classical as well as recent numerical schemes. Convergence results and error estimates are given. We finally briefly show how the abstract setting can also be applied to some models such as flows in fractured medium, elasticity equations and diffusion equations on manifolds. (English)
Keyword: elliptic problem
Keyword: various boundary conditions
Keyword: gradient discretisation method
Keyword: Leray-Lions problem
MSC: 47A58
MSC: 65J05
MSC: 65N99
idZBL: 07217139
idMR: MR4111847
DOI: 10.21136/CMJ.2019.0312-18
.
Date available: 2020-06-17T12:31:22Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148233
.
Reference: [1] Andreianov, B., Boyer, F., Hubert, F.: Besov regularity and new error estimates for finite volume approximations of the $p$-Laplacian.Numer. Math. 100 (2005), 565-592. Zbl 1106.65098, MR 2194585, 10.1007/s00211-005-0591-8
Reference: [2] Andreianov, B., Boyer, F., Hubert, F.: On the finite-volume approximation of regular solutions of the $p$-Laplacian.IMA J. Numer. Anal. 26 (2006), 472-502. Zbl 1113.65104, MR 2241311, 10.1093/imanum/dri047
Reference: [3] Andreianov, B., Boyer, F., Hubert, F.: Discrete Besov framework for finite volume approximation of the $p$-Laplacian on non-uniform Cartesian grids.ESAIM Proc. 18 (2007), 1-10. Zbl 1241.65089, MR 2404891, 10.1051/proc:071801
Reference: [4] Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes.Numer. Methods Partial Differ. Equations 23 (2007), 145-195. Zbl 1111.65101, MR 2275464, 10.1002/num.20170
Reference: [5] Antonietti, P. F., Bigoni, N., Verani, M.: Mimetic finite difference approximation of quasilinear elliptic problems.Calcolo 52 (2015), 45-67. Zbl 1316.65092, MR 3313588, 10.1007/s10092-014-0107-y
Reference: [6] Barrett, J. W., Liu., W. B.: Finite element approximation of the $p$-Laplacian.Math. Comput. 61 (1993), 523-537. Zbl 0791.65084, MR 1192966, 10.2307/2153239
Reference: [7] Barrett, J. W., Liu, W. B.: Finite element approximation of the parabolic $p$-Laplacian.SIAM J. Numer. Anal. 31 (1994), 413-428. Zbl 0805.65097, MR 1276708, 10.1137/0731022
Reference: [8] Barrett, J. W., Liu, W. B.: Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow.Numer. Math. 68 (1994), 437-456. Zbl 0811.76036, MR 1301740, 10.1007/s002110050071
Reference: [9] Beurling, A., Livingston, A. E.: A theorem on duality mappings in Banach spaces.Ark. Mat. 4 (1962), 405-411. Zbl 0105.09301, MR 0145320, 10.1007/BF02591622
Reference: [10] Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional Darcy flows in fractured porous media.Numer. Math. 134 (2016), 569-609. Zbl 1358.76069, MR 3555349, 10.1007/s00211-015-0782-x
Reference: [11] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext, Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [12] Browder, F. E.: On a theorem of Beurling and Livingston.Can. J. Math. 17 (1965), 367-372. Zbl 0132.10602, MR 0176320, 10.4153/CJM-1965-037-2
Reference: [13] Browder, F. E., Figueiredo, D. G. de: $J$-monotone nonlinear operators in Banach spaces.Djairo G. de Figueiredo. Selected Papers D. G. Costa Springer, Cham (2013), 1-9. Zbl 1285.01003, MR 3223088, 10.1007/978-3-319-02856-9_1
Reference: [14] Burman, E., Ern, A.: Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian.C. R. Math. Acad. Sci. Paris 346 (2008), 1013-1016. Zbl 1152.65073, MR 2449647, 10.1016/j.crma.2008.07.005
Reference: [15] P. G. Ciarlet, P. Ciarlet, Jr.: Another approach to linearized elasticity and a new proof of Korn's inequality.Math. Models Methods Appl. Sci. 15 (2005), 259-271. Zbl 1084.74006, MR 2119999, 10.1142/S0218202505000352
Reference: [16] Deimling, K.: Nonlinear Functional Analysis.Springer, Berlin (1985). Zbl 0559.47040, MR 0787404, 10.1007/978-3-662-00547-7
Reference: [17] Pietro, D. A. Di, Droniou, J.: A hybrid high-order method for Leray-Lions elliptic equations on general meshes.Math. Comput. 86 (2017), 2159-2191. Zbl 1364.65224, MR 3647954, 10.1090/mcom/3180
Reference: [18] Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form.ESAIM Math. Model. Numer. Anal. 40 (2006), 1069-1100. Zbl 1117.65154, MR 2297105, 10.1051/m2an:2007001
Reference: [19] Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method.Mathematics & Applications 82, Springer, Cham (2018). Zbl 06897811, MR R3898702, 10.1007/978-3-319-79042-8
Reference: [20] Eymard, R., Gallouët, T., Herbin, R.: Cell centred discretisation of non linear elliptic problems on general multidimensional polyhedral grids.J. Numer. Math. 17 (2009), 173-193. Zbl 1179.65138, MR 2573566, 10.1515/JNUM.2009.010
Reference: [21] Eymard, R., Guichard, C.: Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form.Comput. Appl. Math. 37 (2018), 4023-4054. Zbl 1402.65156, MR 3848524, 10.1007/s40314-017-0558-2
Reference: [22] Glazyrina, L. L., Pavlova, M. F.: On an approximate solution method for the problem of surface and groundwater combined movement with exact approximation on the section line.Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 158 (2016), 482-499 Russian. MR 3659692
Reference: [23] Glowinski, R., Rappaz, J.: Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology.M2AN Math. Model. Numer. Anal. 37 (2003), 175-186. Zbl 1046.76002, MR 1972657, 10.1051/m2an:2003012
Reference: [24] Kato, T.: Introduction to the theory of operators in Banach spaces.Perturbation Theory for Linear Operators Classics in Mathematics, Springer, Berlin (1995), 126-188. Zbl 0836.47009, MR 1335452, 978-3-642-66282-9_3
Reference: [25] Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder.Bull. Soc. Math. Fr. 93 (1965), 97-107 French. Zbl 0132.10502, MR 0194733, 10.24033/bsmf.1617
Reference: [26] Lindenstrauss, J.: On nonseparable reflexive Banach spaces.Bull. Am. Math. Soc. 72 (1966), 967-970. Zbl 0156.36403, MR 0205040, 10.1090/S0002-9904-1966-11606-3
Reference: [27] Liu, W. B., Barrett, J. W.: A further remark on the regularity of the solutions of the $p$-Laplacian and its applications to their finite element approximation.Nonlinear Anal., Theory Methods Appl. 21 (1993), 379-387. Zbl 0856.35017, MR 1237129, 10.1016/0362-546X(93)90081-3
Reference: [28] Liu, W. B., Barrett, J. W.: A remark on the regularity of the solutions of the $p$-Laplacian and its application to their finite element approximation.J. Math. Anal. Appl. 178 (1993), 470-487. Zbl 0799.35085, MR 1238889, 10.1006/jmaa.1993.1319
Reference: [29] Minty, G. J.: On a ``monotonicity'' method for the solution of nonlinear equations in Banach spaces.Proc. Natl. Acad. Sci. USA 50 (1963), 1038-1041. Zbl 0124.07303, MR 0162159, 10.1073/pnas.50.6.1038
.

Files

Files Size Format View
CzechMathJ_70-2020-2_4.pdf 453.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo