Previous |  Up |  Next

Article

Title: Semi-symmetric four dimensional neutral Lie groups (English)
Author: Haji-Badali, Ali
Author: Zaeim, Amirhesam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 393-410
Summary lang: English
.
Category: math
.
Summary: The present paper is concerned with obtaining a classification regarding to four-dimensional semi-symmetric neutral Lie groups. Moreover, we discuss some geometric properties of these spaces. We exhibit a rich class of non-Einstein Ricci soliton examples. (English)
Keyword: semi-symmetric
Keyword: Lie group, Ricci soliton
MSC: 53C25
MSC: 53C30
MSC: 53C50
idZBL: 07217142
idMR: MR4111850
DOI: 10.21136/CMJ.2019.0342-18
.
Date available: 2020-06-17T12:32:51Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148236
.
Reference: [1] Arias-Marco, T., Kowalski, O.: Classification of 4-dimensional homogeneous D'Atri spaces.Czech. Math. J. 133 (2008), 203-239. Zbl 1174.53024, MR 2402535, 10.1007/s10587-008-0014-y
Reference: [2] Bérard-Bérgery, L.: Les espaces homogènes Riemanniens de dimension 4.Géométrie Riemannienne en Dimension 4. Séminaire Arthur Besse Cedic, Paris (1981), 40-60 French. Zbl 0482.53036, MR 0769130
Reference: [3] Boeckx, E.: Einstein-like semi-symmetric spaces.Arch. Math., Brno 29 (1993), 235-240. Zbl 0807.53041, MR 1263125
Reference: [4] Boeckx, E., Calvaruso, G.: When is the unit tangent sphere bundle semi-symmetric?.Tohoku Math. J., II. Ser. 56 (2004), 357-366. Zbl 1076.53032, MR 2075771, 10.2748/tmj/1113246672
Reference: [5] Boeckx, E., Kowalski, O., Vanhecke, L.: Riemannian Manifolds of Conullity Two.World Scientific, Singapore (1996). Zbl 0904.53006, MR 1462887, 10.1142/9789812819970
Reference: [6] Calvaruso, G.: Three-dimensional semi-symmetric homogeneous Lorentzian manifolds.Acta Math. Hung. 121 (2008), 157-170. Zbl 1199.53135, MR 2463255, 10.1007/s10474-008-7194-7
Reference: [7] Calvaruso, G.: Semi-symmetric Lorentzian metrics and three-dimensional curvature homogeneity of order one.Abh. Math. Semin. Univ. Hamb. 79 (2009), 1-10. Zbl 1175.53077, MR 2541339, 10.1007/s12188-009-0018-z
Reference: [8] Calvaruso, G., Leo, B. De: Semi-symmetric Lorentzian three-manifolds admitting a parallel degenerate line field.Mediterr. J. Math. 7 (2010), 89-100. Zbl 1193.53146, MR 2645904, 10.1007/s00009-010-0029-0
Reference: [9] Calvaruso, G., Fino, A.: Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces.Can. J. Math. 64 (2012), 778-804. Zbl 1252.53056, MR 2957230, 10.4153/CJM-2011-091-1
Reference: [10] Calvaruso, G., Fino, A.: Four-dimensional pseudo-Riemannian homogeneous Ricci solitons.Int. J. Geom. Methods Mod. Phys. 12 (2015), Article ID 1550056, 21 pages. Zbl 1405.53054, MR 3349925, 10.1142/S0219887815500565
Reference: [11] Calvaruso, G., Vanhecke, L.: Special ball-homogeneous spaces.Z. Anal. Anwend. 16 (1997), 789-800. Zbl 0892.53023, MR 1615680, 10.4171/ZAA/792
Reference: [12] Calvaruso, G., Zaeim, A.: Neutral metrics on four-dimensional Lie groups.J. Lie Theory 25 (2015), 1023-1044. Zbl 1343.53071, MR 3345046
Reference: [13] Cao, H.-D.: Recent progress on Ricci solitons.Recent advances in geometric analysis Y.-I. Lee et al. Advanced Lectures in Mathematics (ALM) 11, International Press, Somerville (2010), 1-38. Zbl 1201.53046, MR 2648937
Reference: [14] Haji-Badali, A., Karami, R.: Ricci solitons on four-dimensional neutral Lie groups.J. Lie Theory 27 (2017), 943-967. Zbl 06843179, MR 3622327
Reference: [15] Jensen, G. R.: Homogeneous Einstein spaces of dimension four.J. Differ. Geom. 3 (1969), 309-349. Zbl 0194.53203, MR 0261487, 10.4310/jdg/1214429056
Reference: [16] Karami, R., Zaeim, A., Haji-Badali, A.: Ricci solitons and geometry of four dimensional Einstein-like neutral Lie groups.Period. Math. Hung. 78 (2019), 58-78. Zbl 07058278, MR 3919748, 10.1007/s10998-018-0262-z.
Reference: [17] O'Neill, B.: Semi-Riemannian Geometry: With Applications to Relativity.Pure and Applied Mathematics 103, Academic Press, New York (1983). Zbl 0531.53051, MR 0719023
Reference: [18] Rahmani, S.: Métriques de Lorentz sur les groupes de Lie unimodulaires de dimension trois.J. Geom. Phys. 9 (1992), 295-302 French. Zbl 0752.53036, MR 1171140, 10.1016/0393-0440(92)90033-W
Reference: [19] Sekigawa, K.: On some 3-dimensional curvature homogeneous spaces.Tensor, New Ser. 31 (1977), 87-97. Zbl 0356.53016, MR 0464115
Reference: [20] Szabo, Z. I.: Structure theorems on Riemannian spaces satsfying $R(X,Y)\cdot R=0$ I: The local version.J. Differ. Geom. 17 (1982), 531-582. Zbl 0508.53025, MR 0683165, 10.4310/jdg/1214437486
Reference: [21] Takagi, H.: An example of Riemannian manifold satisfying $R(X,Y)\cdot R$ but not $\nabla R = 0$.Tohoku Math. J. 24 (1972), 105-108. Zbl 0237.53041, MR 0319109, 10.2748/tmj/1178241595
Reference: [22] Zaeim, A., Karami, R.: Geometric consequences of four dimensional neutral Lie groups.Bull. Braz. Math. Soc. (N.S.) 50 (2019), 167-186. Zbl 07068771, MR 3935062, 10.1007/s00574-018-0097-5
.

Files

Files Size Format View
CzechMathJ_70-2020-2_7.pdf 326.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo