Previous |  Up |  Next

Article

Title: Generalized Schröder matrices arising from enumeration of lattice paths (English)
Author: Yang, Lin
Author: Yang, Sheng-Liang
Author: He, Tian-Xiao
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 2
Year: 2020
Pages: 411-433
Summary lang: English
.
Category: math
.
Summary: We introduce a new family of generalized Schröder matrices from the Riordan arrays which are obtained by counting of the weighted lattice paths with steps $E = (1, 0)$, $ D = (1,1)$, $ N= (0,1)$, and $ D' = (1,2)$ and not going above the line $y=x$. We also consider the half of the generalized Delannoy matrix which is derived from the enumeration of these lattice paths with no restrictions. Correlations between these matrices are considered. By way of illustration, we give several examples of Riordan arrays of combinatorial interest. In addition, we find some new interesting identities. (English)
Keyword: Riordan array
Keyword: lattice path
Keyword: Delannoy matrix
Keyword: Schröder number
Keyword: Schröder matrix
MSC: 05A15
MSC: 05A19
MSC: 11B83
MSC: 15A24
idZBL: 07217143
idMR: MR4111851
DOI: 10.21136/CMJ.2019.0348-18
.
Date available: 2020-06-17T12:33:30Z
Last updated: 2022-07-04
Stable URL: http://hdl.handle.net/10338.dmlcz/148237
.
Reference: [1] Aigner, M.: Enumeration via ballot numbers.Discrete Math. 308 (2008), 2544-2563. Zbl 1147.05002, MR 2410460, 10.1016/j.disc.2007.06.012
Reference: [2] Barry, P.: On the central coefficients of Riordan matrices.J. Integer Seq. 16 (2013), Article 13.5.1, 12 pages. Zbl 1310.11032, MR 3065330
Reference: [3] Bonin, J., Shapiro, L., Simion, R.: Some $q$-analogues of the Schröder numbers arising from combinatorial statistics on lattice paths.J. Stat. Plann. Inference 34 (1993), 35-55. Zbl 0783.05008, MR 1209988, 10.1016/0378-3758(93)90032-2
Reference: [4] Chen, X., Liang, H., Wang, Y.: Total positivity of Riordan arrays.Eur. J. Comb. 46 (2015), 68-74. Zbl 1307.05010, MR 3305345, 10.1016/j.ejc.2014.11.009
Reference: [5] Cheon, G.-S., Kim, H., Shapiro, L. W.: Combinatorics of Riordan arrays with identical $A$ and $Z$ sequences.Discrete Math. 312 (2012), 2040-2049. Zbl 1243.05007, MR 2920864, 10.1016/j.disc.2012.03.023
Reference: [6] Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions.D. Reidel Publishing, Dordrecht (1974). Zbl 0283.05001, MR 0460128, 10.1007/978-94-010-2196-8
Reference: [7] Deutsch, E.: A bijective proof of the equation linking the Schröder numbers, large and small.Discrete Math. 241 (2001), 235-240. Zbl 0992.05010, MR 1861420, 10.1016/S0012-365X(01)00122-4
Reference: [8] Deutsch, E., Munarini, E., Rinaldi, S.: Skew Dyck paths.J. Stat. Plann. Inference 140 (2010), 2191-2203. Zbl 1232.05010, MR 2609478, 10.1016/j.jspi.2010.01.015
Reference: [9] Dziemiańczuk, M.: Counting lattice paths with four types of steps.Graphs Comb. 30 (2014), 1427-1452. Zbl 1306.05007, MR 3268642, 10.1007/s00373-013-1357-1
Reference: [10] He, T.-X.: Parametric Catalan numbers and Catalan triangles.Linear Algebra Appl. 438 (2013), 1467-1484. Zbl 1257.05003, MR 2997825, 10.1016/j.laa.2012.10.001
Reference: [11] Humphreys, K.: A history and a survey of lattice path enumeration.J. Stat. Plann. Inference 140 (2010), 2237-2254. Zbl 1204.05015, MR 2609483, 10.1016/j.jspi.2010.01.020
Reference: [12] Luzón, A., Merlini, D., Morón, M., Sprugnoli, R.: Identities induced by Riordan arrays.Linear Algebra Appl. 436 (2011), 631-647. Zbl 1232.05011, MR 2854896, 10.1016/j.laa.2011.08.007
Reference: [13] Mansour, T., Schork, M., Sun, Y.: Motzkin numbers of higher ranks: Generating function and explicit expression.J. Integer Seq. 10 (2007), Article 07.7.4, 11 pages. Zbl 1141.05308, MR 2322499
Reference: [14] Merlini, D.: Proper generating trees and their internal path length.Discrete Appl. Math. 156 (2008), 627-646. Zbl 1136.05002, MR 2397210, 10.1016/j.dam.2007.08.051
Reference: [15] Merlini, D., Rogers, D. G., Sprugnoli, R., Verri, M. C.: On some alternative characterizations of Riordan arrays.Can. J. Math. 49 (1997), 301-320. Zbl 0886.05013, MR 1447493, 10.4153/CJM-1997-015-x
Reference: [16] Merlini, D., Sprugnoli, R.: Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern.Theor. Comput. Sci. 412 (2011), 2988-3001. Zbl 1220.68079, MR 2830262, 10.1016/j.tcs.2010.07.019
Reference: [17] Niederhausen, H.: Inverses of Motzkin and Schröder paths.Integers 12 (2012), Article ID A49, 19 pages. Zbl 1290.05011, MR 3083422
Reference: [18] Nkwanta, A., Shapiro, L. W.: Pell walks and Riordan matrices.Fibonacci Q. 43 (2005), 170-180. Zbl 1074.60053, MR 2147953
Reference: [19] Pergola, E., Sulanke, R. A.: Schröder triangles, paths, and parallelogram polyominoes.J. Integer Seq. 1 (1998), Article 98.1.7. Zbl 0974.05003, MR 1677075
Reference: [20] Ramírez, J. L., Sirvent, V. F.: Generalized Schröder matrix and its combinatorial interpretation.Linear Multilinear Algebra 66 (2018), 418-433. Zbl 1387.15004, MR 3750599, 10.1080/03081087.2017.1301360
Reference: [21] Rogers, D. G.: A Schröder triangle: Three combinatorial problems.Combinatorial Mathematics, V Lecture Notes in Mathematics 622, Springer, Berlin (1977), 175-196. Zbl 0368.05004, MR 0462964, 10.1007/BFb0069192
Reference: [22] Rogers, D. G., Shapiro, L. W.: Some correspondence involving the Schröder numbers and relations.Combinatorial Mathematics Lecture Notes in Mathematics 686, Springer, Berlin (1978). MR 0526754, 10.1007/BFb0062541
Reference: [23] Schröder, E.: Vier kombinatorische probleme.Schloemilch Z. (Zs. f. Math. u. Phys.) 15 (1870), 361-376 German \99999JFM99999 02.0108.04.
Reference: [24] Shapiro, L. W., Getu, S., Woan, W.-J., Woodson, L. C.: The Riordan group.Discrete Appl. Math. 34 (1991), 229-239. Zbl 0754.05010, MR 1137996, 10.1016/0166-218X(91)90088-E
Reference: [25] Sloane, N. J. A.: On-line Encyclopedia of Integer Sequences (OEIS).Available at https://oeis.org (2018). MR 3822822
Reference: [26] Song, C.: The generalized Schröder theory.Electron. J. Comb. 12 (2005), Article ID 53, 10 pages. Zbl 1077.05010, MR 2176529
Reference: [27] Sprugnoli, R.: Riordan arrays and combinatorial sums.Discrete Math. 132 (1994), 267-290. Zbl 0814.05003, MR 1297386, 10.1016/0012-365X(92)00570-H
Reference: [28] Stanley, R. P.: Hipparchus, Plutarch, Schröder, and Hough.Am. Math. Mon. 104 (1997), 344-350. Zbl 0873.01002, MR 1450667, 10.2307/2974582
Reference: [29] Stanley, R. P.: Enumerative Combinatorics. Volume 2.Cambridge Studies in Advanced Mathematics 62, Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589
Reference: [30] Sulanke, R. A.: Bijective recurrences concerning Schröder paths.Electron. J. Combin. 5 (1998), Article ID R47, 11 pages. Zbl 0913.05007, MR 1661185, 10.37236/1385
Reference: [31] Woan, W.-J.: A relation between restricted and unrestricted weighted Motzkin paths.J. Integer Seq. 9 (2006), Article 06.1.7, 12 pages. Zbl 1101.05008, MR 2188940
Reference: [32] Yang, S.-L., Dong, Y.-N., He, T.-X.: Some matrix identities on colored Motzkin paths.Discrete Math. 340 (2017), 3081-3091. Zbl 1370.05114, MR 3698097, 10.1016/j.disc.2017.07.006
Reference: [33] Yang, S.-L., Dong, Y.-N., Yang, L., Yin, J.: Half of a Riordan array and restricted lattice paths.Linear Algebra Appl. 537 (2018), 1-11. Zbl 1373.05007, MR 3716232, 10.1016/j.laa.2017.09.027
Reference: [34] Yang, S.-L., Xu, Y.-X., He, T.-X.: $(m,r)$-central Riordan arrays and their applications.Czech. Math. J. 67 (2017), 919-936. Zbl 06819563, MR 3736009, 10.21136/CMJ.2017.0165-16
Reference: [35] Yang, S.-L., Zheng, S.-N., Yuan, S.-P., He, T.-X.: Schröder matrix as inverse of Delannoy matrix.Linear Algebra Appl. 439 (2013), 3605-3614. Zbl 1283.15098, MR 3119875, 10.1016/j.laa.2013.09.044
.

Files

Files Size Format View
CzechMathJ_70-2020-2_8.pdf 366.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo