Title:
|
Polynomials and degrees of maps in real normed algebras (English) |
Author:
|
Sakkalis, Takis |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
28 |
Issue:
|
1 |
Year:
|
2020 |
Pages:
|
43-54 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal{A}$ be the algebra of quaternions $\mathbb{H}$ or octonions $\mathbb{O}$. In this manuscript an elementary proof is given, based on ideas of Cauchy and D'Alembert, of the fact that an ordinary polynomial $f(t) \in \mathcal{A} [t]$ has a root in $\mathcal{A}$. As a consequence, the Jacobian determinant $\lvert J(f)\rvert $ is always non-negative in $\mathcal{A}$. Moreover, using the idea of the topological degree we show that a regular polynomial $g(t)$ over $\mathcal{A}$ has also a root in $\mathcal{A}$. Finally, utilizing multiplication ($*$) in $\mathcal{A}$, we prove various results on the topological degree of products of maps. In particular, if $S$ is the unit sphere in $\mathcal{A}$ and $h_1, h_2\colon S \to S$ are smooth maps, it is shown that $\deg (h_1 * h_2)=\deg (h_1) + \deg (h_2)$. (English) |
Keyword:
|
ordinary polynomials; regular polynomials; Jacobians; degrees of maps |
MSC:
|
11R52 |
MSC:
|
12E15 |
MSC:
|
26B10 |
idZBL:
|
Zbl 1470.26021 |
idMR:
|
MR4124289 |
. |
Date available:
|
2020-07-22T11:50:20Z |
Last updated:
|
2021-11-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/148260 |
. |
Reference:
|
[1] Baez, J.C.: The octonions.Bull. Amer. Math. Soc., 39, 2002, 145-205, MR 1886087, 10.1090/S0273-0979-01-00934-X |
Reference:
|
[2] Bourbaki, N.: General Topology, Part 2.1966, Hermann, Paris, MR 0141067 |
Reference:
|
[3] Eilenberg, S., Niven, I.: The ``fundamental theorem of algebra'' for quaternions.Bull. Amer. Math. Soc., 50, 4, 1944, 246-248, MR 0009588, 10.1090/S0002-9904-1944-08125-1 |
Reference:
|
[4] Gentili, G., Struppa, D.C.: On the multiplicity of zeros of polynomials with quaternionic coefficients.Milan J. Math., 76, 1, 2008, 15-25, MR 2465984, 10.1007/s00032-008-0093-0 |
Reference:
|
[5] Gentili, G., Struppa, D.C., Vlacci, F.: The fundamental theorem of algebra for Hamilton and Cayley numbers.Mathematische Zeitschrift, 259, 4, 2008, 895-902, Springer, MR 2403747, 10.1007/s00209-007-0254-9 |
Reference:
|
[6] Gordon, B., Motzkin, T.S.: On the zeros of polynomials over division rings.Transactions of the American Mathematical Society, 116, 1965, 218-226, JSTOR, MR 0195853, 10.1090/S0002-9947-1965-0195853-2 |
Reference:
|
[7] Milnor, J., Weaver, D.W.: Topology from the differentiable viewpoint.1997, Princeton University Press, MR 1487640 |
Reference:
|
[8] Rodríguez-Ordóñez, H.: A note on the fundamental theorem of algebra for the octonions.Expositiones Mathematicae, 25, 4, 2007, 355-361, Elsevier, MR 2360922, 10.1016/j.exmath.2007.02.005 |
Reference:
|
[9] Topuridze, N.: On the roots of polynomials over division algebras.Georgian Math. Journal, 10, 4, 2003, 745-762, Walter de Gruyter, MR 2037774, 10.1515/GMJ.2003.745 |
. |