Previous |  Up |  Next

Article

Title: Polynomials and degrees of maps in real normed algebras (English)
Author: Sakkalis, Takis
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 1
Year: 2020
Pages: 43-54
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal{A}$ be the algebra of quaternions $\mathbb{H}$ or octonions $\mathbb{O}$. In this manuscript an elementary proof is given, based on ideas of Cauchy and D'Alembert, of the fact that an ordinary polynomial $f(t) \in \mathcal{A} [t]$ has a root in $\mathcal{A}$. As a consequence, the Jacobian determinant $\lvert J(f)\rvert $ is always non-negative in $\mathcal{A}$. Moreover, using the idea of the topological degree we show that a regular polynomial $g(t)$ over $\mathcal{A}$ has also a root in $\mathcal{A}$. Finally, utilizing multiplication ($*$) in $\mathcal{A}$, we prove various results on the topological degree of products of maps. In particular, if $S$ is the unit sphere in $\mathcal{A}$ and $h_1, h_2\colon S \to S$ are smooth maps, it is shown that $\deg (h_1 * h_2)=\deg (h_1) + \deg (h_2)$. (English)
Keyword: ordinary polynomials; regular polynomials; Jacobians; degrees of maps
MSC: 11R52
MSC: 12E15
MSC: 26B10
idZBL: Zbl 1470.26021
idMR: MR4124289
.
Date available: 2020-07-22T11:50:20Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148260
.
Reference: [1] Baez, J.C.: The octonions.Bull. Amer. Math. Soc., 39, 2002, 145-205, MR 1886087, 10.1090/S0273-0979-01-00934-X
Reference: [2] Bourbaki, N.: General Topology, Part 2.1966, Hermann, Paris, MR 0141067
Reference: [3] Eilenberg, S., Niven, I.: The ``fundamental theorem of algebra'' for quaternions.Bull. Amer. Math. Soc., 50, 4, 1944, 246-248, MR 0009588, 10.1090/S0002-9904-1944-08125-1
Reference: [4] Gentili, G., Struppa, D.C.: On the multiplicity of zeros of polynomials with quaternionic coefficients.Milan J. Math., 76, 1, 2008, 15-25, MR 2465984, 10.1007/s00032-008-0093-0
Reference: [5] Gentili, G., Struppa, D.C., Vlacci, F.: The fundamental theorem of algebra for Hamilton and Cayley numbers.Mathematische Zeitschrift, 259, 4, 2008, 895-902, Springer, MR 2403747, 10.1007/s00209-007-0254-9
Reference: [6] Gordon, B., Motzkin, T.S.: On the zeros of polynomials over division rings.Transactions of the American Mathematical Society, 116, 1965, 218-226, JSTOR, MR 0195853, 10.1090/S0002-9947-1965-0195853-2
Reference: [7] Milnor, J., Weaver, D.W.: Topology from the differentiable viewpoint.1997, Princeton University Press, MR 1487640
Reference: [8] Rodríguez-Ordóñez, H.: A note on the fundamental theorem of algebra for the octonions.Expositiones Mathematicae, 25, 4, 2007, 355-361, Elsevier, MR 2360922, 10.1016/j.exmath.2007.02.005
Reference: [9] Topuridze, N.: On the roots of polynomials over division algebras.Georgian Math. Journal, 10, 4, 2003, 745-762, Walter de Gruyter, MR 2037774, 10.1515/GMJ.2003.745
.

Files

Files Size Format View
ActaOstrav_28-2020-1_4.pdf 404.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo