Previous |  Up |  Next

Article

Title: Existence of entropy solutions to nonlinear degenerate parabolic problems with variable exponent and $L^1$-data (English)
Author: Sabri, Abdelali
Author: Jamea, Ahmed
Author: Alaoui, Hamad Talibi
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 28
Issue: 1
Year: 2020
Pages: 67-88
Summary lang: English
.
Category: math
.
Summary: In the present paper, we prove existence results of entropy solu\-tions to a class of nonlinear degenerate parabolic $p(\cdot )$-Laplacian problem with Dirichlet-type boundary conditions and $L^1$ data. The main tool used here is the Rothe method combined with the theory of variable exponent Sobolev spaces. (English)
Keyword: Degenerate parabolic problem
Keyword: entropy solution
Keyword: existence
Keyword: semi-discretization
Keyword: Rothe's method
Keyword: weighted Sobolev space
MSC: 35A02
MSC: 35J60
MSC: 35J65
MSC: 35J92
idZBL: Zbl 1468.35087
idMR: MR4124291
.
Date available: 2020-07-22T11:53:24Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/148262
.
Reference: [1] Abassi, A., Hachimi, A. El, Jamea, A.: Entropy solutions to nonlinear Neumann problems with $L^1$-data.Int. J. Math. Statist, 2, 2008, 4-17, MR 2348474
Reference: [2] Akdim, Y., Chakir, A., Elgorch, N., Mekkour, M.: Entropy Solutions of Nonlinear $p(x)$-Parabolic Inequalities.Nonlinear Dyn. Syst. Theory, 18, 2, 2018, 107-129, MR 3820826
Reference: [3] Alaoui, M.K., Meskine, D., Souissi, A.: On some class of nonlinear parabolic inequalities in Orlicz spaces.Nonlinear Analysis: Theory, Methods & Applications, 74, 17, 2011, 5863-5875, Elsevier, MR 2833359, 10.1016/j.na.2011.04.048
Reference: [4] Azroul, E., Barbara, A., Benboubker, M.B., Haiti, K. El: Existence of entropy solutions for degenerate elliptic unilateral problems with variable exponents.Boletim da Sociedade Paranaense de Matem{á}tica, 36, 1, 2018, 79-99, MR 3632473
Reference: [5] Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces.Portugaliae Mathematica, 66, 1, 2009, 29-63, MR 2512819, 10.4171/PM/1829
Reference: [6] Bénilan, Ph., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J.L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations.Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22, 2, 1995, 241-273, MR 1354907
Reference: [7] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration.SIAM journal on Applied Mathematics, 66, 4, 2006, 1383-1406, SIAM, Zbl 1102.49010, MR 2246061, 10.1137/050624522
Reference: [8] Eden, A., Michaux, B., Rakotoson, J.M.: Semi-discretized nonlinear evolution equations as discrete dynamical systems and error analysis.Indiana University mathematics journal, 1990, 737-783, JSTOR, MR 1078736, 10.1512/iumj.1990.39.39036
Reference: [9] Hachimi, A. El, Jamea, A.: Nonlinear parabolic problems with Neumann-type boundary conditions and $L^{1}$-data.Electronic Journal of Qualitative Theory of Differential Equations, 2007, 27, 2007, 1-22, University of Szeged, Hungary, MR 2354156
Reference: [10] Fan, X., Zhao, D.: On the spaces $L^{p(x)}(\Omega )$ and $W^{m,p(x)}(\Omega )$.Journal of Mathematical Analysis and Applications, 263, 2, 2001, 424-446, Elsevier,
Reference: [11] Ho, K., Sim, I.: Existence and some properties of solutions for degenerate elliptic equations with exponent variable.Nonlinear Analysis: Theory, Methods & Applications, 98, 2014, 146-164, Elsevier, MR 3158451, 10.1016/j.na.2013.12.003
Reference: [12] Hästö, P.: The $p(x)$-Laplacian and applications.J. Anal, 15, 2007, 53-62, Citeseer, MR 2554092
Reference: [13] Jamea, A.: Weak solutions to nonlinear parabolic problems with variable exponent.International Journal of Mathematical Analysis, 10, 12, 2016, 553-564, 10.12988/ijma.2016.6223
Reference: [14] Jamea, A., Lamrani, A.A., Hachimi, A. El: Existence of entropy solutions to nonlinear parabolic problems with variable exponent and $ L^1$-data.Ricerche di Matematica, 67, 2, 2018, 785-801, Springer, MR 3864809, 10.1007/s11587-018-0359-y
Reference: [15] Kim, Y.H., Wang, L., Zhang, C.: Global bifurcation for a class of degenerate elliptic equations with variable exponents.Journal of Mathematical Analysis and Applications, 371, 2, 2010, 624-637, Elsevier, MR 2670139, 10.1016/j.jmaa.2010.05.058
Reference: [16] Ouaro, S., Ouedraogo, A.: Nonlinear parabolic problems with variable exponent and $L^{1}$-data.Electronic Journal of Differential Equations, 2017, 32, 2017, 1-32, MR 3609160
Reference: [17] Růžička, M.: Electrorheological Fluids: Modelling and Mathematical Theory, Lecture Notes in Math. 1748.2000, Springer, Berlin, MR 1810360, 10.1007/BFb0104030
Reference: [18] Sanchón, M., Urbano, J.M.: Entropy solutions for the $p(x)$-Laplace equation.Transactions of the American Mathematical Society, 361, 12, 2009, 6387-6405, MR 2538597, 10.1090/S0002-9947-09-04399-2
Reference: [19] Zhang, C.: Entropy solutions for nonlinear elliptic equations with variable exponents.Electronic Journal of Differential Equations, 2014, 92, 2014, 1-14, MR 3193998
Reference: [20] Zhang, C., Zhou, S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^{1}$ data.Journal of Differential Equations, 248, 6, 2010, 1376-1400, Elsevier, MR 2593046, 10.1016/j.jde.2009.11.024
.

Files

Files Size Format View
ActaOstrav_28-2020-1_6.pdf 432.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo