Previous |  Up |  Next

Article

Title: Parametric control to quasi-linear systems based on dynamic compensator and multi-objective optimization (English)
Author: Gu, Da-Ke
Author: Zhang, Da-Wei
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 516-542
Summary lang: English
.
Category: math
.
Summary: This paper considers a parametric approach for quasi-linear systems by using dynamic compensator and multi-objective optimization. Based on the solutions of generalized Sylvester equations, we establish the more general parametric forms of dynamic compensator and the left and right closed-loop eigenvector matrices, and give two groups of arbitrary parameters. By using the parametric approach, the closed-loop system is converted into a linear constant one with a desired eigenstructure. Meanwhile, it also proposes a novel method to realize multi-objective design and optimization. Multiple performance objectives, containing overall eigenvalue sensitivity, $H_2$ norm, $H_\infty$ norm and low compensation gain, are formulated by arbitrary parameters, then robustness and low compensation gain criteria are expressed by a comprehensive objective function which contains each performance index weighted. By utilizing degrees of freedom (DOFs) in arbitrary parameters, we can optimize the comprehensive objective function such that an optimized dynamic compensator is found to satisfy the robustness and low compensation gain criteria. Finally, an example of attitude control of combined spacecrafts is presented which proves the effectiveness and feasibility of the parametric approach. (English)
Keyword: quasi-linear systems
Keyword: parametric control
Keyword: dynamic compensator
Keyword: multi-objective design and optimization
Keyword: utilize DOFs in parameter matrices
MSC: 93B51
MSC: 93B52
MSC: 93B60
idZBL: Zbl 07250735
idMR: MR4131741
DOI: 10.14736/kyb-2020-3-0516
.
Date available: 2020-09-02T09:24:35Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148312
.
Reference: [1] Chang, J.: Dynamic compensator-based second-order sliding mode controller design for mechanical systems..IET Control Theory A 7 (2013), 13, 1675-1682. MR 3115112, 10.1049/iet-cta.2012.1027
Reference: [2] Chen, C. K., Lai, T. W., Yan, J. J., Liao, T. L.: Synchronization of two chaotic systems: Dynamic compensator approach..Chaos Soliton. Fract. 39 (2009), 15, 1055-1063. MR 2512914, 10.1016/j.chaos.2007.04.004
Reference: [3] Santos, J. F. S. Dos, Pellanda, P. C., Simões, A. M.: Robust pole placement under structural constraints..Syst. Control Lett. 116 (2018), 8-14. MR 3804535, 10.1016/j.sysconle.2018.03.008
Reference: [4] G.-R, Duan: Generalized Sylvester Equations - Unified Parametric Solutions..CRC Press Taylor and Francis Group, Boca Raton 2014. MR 3380768
Reference: [5] Duan, G.-R.: Parametric control of quasi-linear systems by output feedback..In: Proc. 14th International Conference on Control, Automation and Systems, IEEE Press, Gyeonggi-do 2014, pp. 928-934. 10.1109/iccas.2014.6987917
Reference: [6] Duan, G.-R., Yu, H.-H.: LMIs in Control Systems Analysis, Design and Applications..CRC Press Taylor and Francis Group, Boca Raton 2013. MR 3328859, 10.1201/b15060
Reference: [7] Gu, D.-K., Liu, G.-P., Duan, G.-R.: Parametric control to a type of quasi-linear second-order systems via output feedback..Int. J. Control 92 (2019), 2, 291-302. MR 3938071, 10.1080/00207179.2017.1350885
Reference: [8] Gu, D.-K., Zhang, D.-W., Duan, G.-R.: Parametric control to a type of quasi-linear high-order systems via output feedback..Eur. J. Control. 47 (2019), 44-52. MR 3948880, 10.1016/j.ejcon.2018.09.008
Reference: [9] Gu, D.-K., Zhang, D.-W., Duan, G.-R.: Parametric control to linear time-varying systems based on dynamic compensator and multi-objective optimization..Asian J. Control (2019). MR 4001112, 10.1002/asjc.2112
Reference: [10] Gu, D.-K., Zhang, D.-W.: Parametric control to second-order linear time-varying systems based on dynamic compensator and multi-objective optimization..App. Math. Comput. 365 (2020), 124681. MR 4001112, 10.1016/j.amc.2019.124681
Reference: [11] Hashem, I., Telen, D., Nimmegeers, P., Logist, F., Impe, J. V.: Multi-objective optimization of a plug flow reactor using a divide and conquer approach..IFAC-PapersOnLine 50 (2017), 1, 8722-8727. 10.1016/j.ifacol.2017.08.1712
Reference: [12] Jadachowski, L., Meurer, T., Kugi, A.: Backstepping observers for periodic quasi-linear parabolic PDEs..IFAC Proc. Vol. 47 (2014), 3, 7761-7766. 10.3182/20140824-6-za-1003.01246
Reference: [13] Klug, M., Castelan, E. B., Leite, V. J S.: A dynamic compensator for parameter varying systems subject to actuator limitations applied to a T-S fuzzy system..IFAC Proc. Vol. 44 (2011), 1, 14495-145000. 10.3182/20110828-6-it-1002.02175
Reference: [14] Knüppel, T., Woittennek, F.: Control design for quasi-linear hyperbolic systems with an application to the heavy rope..IEEE T. Automat. Control 60 (2015), 1, 5-18. MR 3299410, 10.1109/tac.2014.2336451
Reference: [15] Konigorski, U.: Pole placement by parametric output feedback..Syst. Control Lett. 61 (2012), 2, 292-297. MR 2878717, 10.1016/j.sysconle.2011.11.015
Reference: [16] Li, K., Nagasio, T., Kida, T.: Gain-scheduling control for extending space structures..Trans. Japan Soc. Mechani. Engineers Series C 70 (2004), 702, 1401-1408. 10.1299/kikaic.70.1401
Reference: [17] Lim, D., Yi, K., Jung, S., Jung, H., Ro, J.: Optimal design of an interior permanent magnet synchronous motor by using a new surrogate-assisted multi-objective optimization..IEEE T. Magn. 51 (2015), 11, 1-4. 10.1109/tmag.2015.2449872
Reference: [18] Liu, G.-P., Patton, R. J.: Eigenstructure Assignment for Control System Design..John Wiley and Sons, Hoboken 1998.
Reference: [19] Manuel, P., Gonzalo, R., Victor, T.: Linear attraction in quasi-linear difference systems..J. Differ. Equ. Appl. 17 (2011), 5, 765-778. MR 2795524, 10.1080/10236190903260820
Reference: [20] Mehrotra, K., Mahapatra, P.: A jerk model to tracking highly maneuvering targets..IEEE T. Aero. Elec. Sys. 33 (1997), 4, 1094-1105. 10.1109/7.624345
Reference: [21] Mihai, M.: Optimal singular control for quasi-linear systems with small parameters..Proc. Appl. Math. Mech. 7 (2007), 4130033-4130034. 10.1002/pamm.200700782
Reference: [22] Patton, R. J., Liu, G.-P., Patel, Y.: Sensitivity properties of multirate feedback control systems, based on eigenstructure assignment..IEEE Trans. Automat. Control 40 (1995), 2, 337-342. MR 1312908, 10.1109/9.341806
Reference: [23] Rotondo, D., Nejjari, F., Puig, V.: Model reference switching quasi-LPV control of a four wheeled omnidirectional robot..IFAC Proc. Vol. 47 (2014), 3, 4062-4067. 10.3182/20140824-6-za-1003.00054
Reference: [24] Seo, J. H., Shim, H., Back, J.: Consensus of high-order linear systems using dynamic output feedback compensator: Low gain approach..Automatica 45 (2009), 11, 2659-2664. MR 2889327, 10.1016/j.automatica.2009.07.022
Reference: [25] She, S. X., Dong, S. J.: Varying accelerated motion and comfort..Phys. Engrg. 16 (2006), 35-37. (In Chinese)
Reference: [26] Slotine, J.-J. E., Li, W.-P.: Applied Nonlinear Control..Pearson Education Company, Upper Saddle River 1991. Zbl 0753.93036
Reference: [27] Tang, Y. R., Xiao, X., Li, Y. M.: Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor..Measurement 109 (2017), 51-64. 10.1016/j.measurement.2017.05.036
Reference: [28] Tsuzuki, T., Yamashita, Y.: Global asymptotic stabilization for a nonlinear system on a manifold via a dynamic compensator..IFAC Proc. Vol. 41 (2008), 2, 6178-6183. 10.3182/20080706-5-kr-1001.01043
Reference: [29] Yi, T., Huang, D., Fu, F., He, H., Li, T.: Multi-objective bacterial foraging optimization algorithm based on parallel cell entropy for aluminum electrolysis production process..IEEE Trans. Ind. Electron. 63 (2016), 4, 2488-2500. 10.1109/tie.2015.2510977
Reference: [30] Yuno, T., Ohtsuka, Y.: Rendering a prescribed subset invariant for polynomial systems by dynamic state-feedback compensator..IFAC-PapersOnLine 49 (2016), 18, 1042-1047. 10.1016/j.ifacol.2016.10.305
Reference: [31] Zhou, B., Duan, G.-R.: A new solution to the generalized Sylvester matrix equation $AV-EVF=BW$..Syst. Control Lett. 55 (2009), 3, 193-198. MR 2188507, 10.1016/j.sysconle.2005.07.002
Reference: [32] Zhou, D., Wang, J., Jiang, B., Guo, H., Ji, Y.: Multi-task multi-view learning based on cooperative multi-objective optimization..IEEE Access 6 (2018), 19465-19477. 10.1109/access.2017.2777888
Reference: [33] Zola, E., Barcelo-Arroyo, F., Kassler, A.: Multi-objective optimization of WLAN associations with improved handover costs..IEEE Commun. Lett. 18 (2014), 11, 2007-2010. 10.1109/lcomm.2014.2359456
.

Files

Files Size Format View
Kybernetika_56-2020-3_6.pdf 824.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo