Previous |  Up |  Next

Article

Title: Delay-dependent stability of linear multi-step methods for linear neutral systems (English)
Author: Hu, Guang-Da
Author: Shao, Lizhen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 3
Year: 2020
Pages: 543-558
Summary lang: English
.
Category: math
.
Summary: In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived for linear multi-step methods with preserving delay-dependent stability. Numerical examples are given to illustrate the main results. (English)
Keyword: neutral systems with multiple delays
Keyword: delay-dependent stability
Keyword: linear multi-step method
Keyword: Lagrange interpolation
Keyword: argument principle
MSC: 65L05
MSC: 65L07
MSC: 65L20
idZBL: Zbl 07250736
idMR: MR4131742
DOI: 10.14736/kyb-2020-3-0543
.
Date available: 2020-09-02T09:25:43Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148313
.
Reference: [1] Aleksandrov, A. Y., Hu, G. D., Zhabko, A. P.: Delay-independent stability conditions for some classes of nonlinear systems..IEEE Trans. Automat. Control 59 (2014), 2209-2214. MR 3245263, 10.1109/tac.2014.2299012
Reference: [2] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations..Oxford University Press, Oxford 2003. MR 1997488, 10.1093/acprof:oso/9780198506546.001.0001
Reference: [3] Brown, J. W., Churchill, R. V.: Complex Variables and Applications..McGraw-Hill Companies, Inc. and China Machine Press, Beijing 2004. MR 0112948
Reference: [4] Fridman, E.: Introduction to Time-Delay Systems: Analysis and Control..Birkhäuser, New York 2014. MR 3237720, 10.1007/978-3-319-09393-2
Reference: [5] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations..IMA J. Math. Control Inform. 19 (2002), 5-23. MR 1899001, 10.1093/imamci/19.1_and_2.5
Reference: [6] Han, Q. L.: Stability criteria for a class of linear neutral systems with time-varying discrete and distributed delays..IMA J. Math. Control Inform. 20 (2003), 371-386. MR 2028146, 10.1093/imamci/20.4.371
Reference: [7] Hu, G. D.: Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays..Kybernetika 54 (2018), 718-735. MR 3863252, 10.14736/kyb-2018-4-0718
Reference: [8] Hu, G. D., Cahlon, B.: Estimations on numerically stable step-size for neutral delay differential systems with multiple delays..J. Compt. Appl. Math. 102 (1999), 221-234. MR 1674027, 10.1016/s0377-0427(98)00215-5
Reference: [9] Hu, G. D., Liu, M.: Stability criteria of linear neutral systems with multiple delays..IEEE Trans. Automat. Control 52 (2007), 720-724. MR 2310053, 10.1109/tac.2007.894539
Reference: [10] Huang, C., Vandewalle, S.: An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays..SIAM J. Scientific Computing 25 (2004), 1608-1632. MR 2087328, 10.1137/s1064827502409717
Reference: [11] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra..Prentice-Hall, Englewood Cliffs 2000.
Reference: [12] Jury, E. I.: Theory and Application of $z$-Transform Method..John Wiley and Sons, New York 1964.
Reference: [13] Kim, A. V., Ivanov, A. V.: Multistep numerical methods for fuctional difefrential equations..Math. Comput. Simul. 45 (1998), 377-384. MR 1622949, 10.1016/s0378-4754(97)00117-1
Reference: [14] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations..Kluwer Academic Publishers, Dordrecht 1999. MR 1680144, 10.1007/978-94-017-1965-0
Reference: [15] Lambert, J. D.: Numerical Methods for Ordinary Differential Systems..John Wiley and Sons, New York 1999. MR 1127425
Reference: [16] Lancaster, P., Tismenetsky, M.: The Theory of Matrices with Applications..Academic Press, Orlando 1985. MR 0792300
Reference: [17] Maset, S.: Instability of Runge-Kutta methods when applied to linear systems of delay differential equations..Numer. Math. 90 (2002), 555-562. MR 1884230, 10.1007/s002110100266
Reference: [18] Medvedeva, I. V., Zhabko, A. P.: Synthesis of Razumikhin and Lyapunov-Krasovskii approaches to stability analysis of time-delay systems..Automatica 51 (2015), 372-377. MR 3284791, 10.1016/j.automatica.2014.10.074
Reference: [19] Tian, H., Kuang, J.: The stability of the $\theta$-methods in numerical solution of delay differential equations with several delay terms..J. Comput. Appl. Math. 58 (1995), 171-181. MR 1343634, 10.1016/0377-0427(93)e0269-r
Reference: [20] Vyhlidal, T., Zitek, P.: Modification of Mikhaylov criterion for neutral time-delay systems..IEEE Trans. Automat. Control 54 (2009), 2430-2435. MR 2562848, 10.1109/tac.2009.2029301
.

Files

Files Size Format View
Kybernetika_56-2020-3_7.pdf 590.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo