Previous |  Up |  Next

Article

Title: Strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings (English)
Author: Zhu, Zhanmin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 657-674
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal {T}$ be a weak torsion class of left $R$-modules and $n$ a positive integer. A left $R$-module $M$ is called $(\mathcal {T},n)$-injective if ${\rm Ext}^n_R(C, M)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a right $R$-module $M$ is called $(\mathcal {T},n)$-flat if ${\rm Tor}^R_n(M, C)=0$ for each $(\mathcal {T},n+1)$-presented left $R$-module $C$; a left $R$-module $M$ is called $(\mathcal {T},n)$-projective if ${\rm Ext}^n_R(M, N)=0$ for each $(\mathcal {T},n)$-injective left $R$-module $N$; the ring $R$ is called strongly $(\mathcal {T},n)$-coherent if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then $K$ is $(\mathcal {T},n)$-projective; the ring $R$ is called $(\mathcal {T},n)$-semihereditary if whenever $0\rightarrow K\rightarrow P\rightarrow C\rightarrow 0$ is exact, where $C$ is $(\mathcal {T},n+1)$-presented and $P$ is finitely generated projective, then ${\rm pd} (K)\leq n-1$. Using the concepts of $(\mathcal {T},n)$-injectivity and $(\mathcal {T},n)$-flatness of modules, we present some characterizations of strongly $(\mathcal {T},n)$-coherent rings, $(\mathcal {T},n)$-semihereditary rings and $(\mathcal {T},n)$-regular rings. (English)
Keyword: $(\mathcal {T},n)$-injective module
Keyword: $(\mathcal {T},n)$-flat module
Keyword: strongly $(\mathcal {T},n)$-coherent ring
Keyword: $(\mathcal {T},n)$-semihereditary ring
Keyword: $(\mathcal {T},n)$-regular ring
MSC: 16D40
MSC: 16D50
MSC: 16E60
MSC: 16P70
idZBL: 07250681
idMR: MR4151697
DOI: 10.21136/CMJ.2020.0377-18
.
Date available: 2020-09-07T09:34:59Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148320
.
Reference: [1] Chase, S. U.: Direct products of modules.Trans. Am. Math. Soc. 97 (1960), 457-473. Zbl 0100.26602, MR 0120260, 10.1090/S0002-9947-1960-0120260-3
Reference: [2] Chen, J., Ding, N.: A note on existence of envelopes and covers.Bull. Aust. Math. Soc. 54 (1996), 383-390. Zbl 0882.16002, MR 1419601, 10.1017/S0004972700021791
Reference: [3] Chen, J., Ding, N.: On $n$-coherent rings.Commun. Algebra 24 (1996), 3211-3216. Zbl 0877.16010, MR 1402554, 10.1080/00927879608825742
Reference: [4] Costa, D. L.: Parameterizing families of non-Noetherian rings.Commun. Algebra 22 (1994), 3997-4011. Zbl 0814.13010, MR 1280104, 10.1080/00927879408825061
Reference: [5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). Zbl 0952.13001, MR 1753146, 10.1515/9783110803662
Reference: [6] Enochs, E. E., Jenda, O. M. G., López-Ramos, J. A.: The existence of Gorenstein flat covers.Math. Scand. 94 (2004), 46-62. Zbl 1061.16003, MR 2032335, 10.7146/math.scand.a-14429
Reference: [7] Jain, S.: Flat and FP-injectivity.Proc. Am. Math. Soc. 41 (1973), 437-442. Zbl 0246.16013, MR 0323828, 10.1090/S0002-9939-1973-0323828-9
Reference: [8] Kabbaj, S.-E., Mahdou, N.: Trivial extensions defined by coherent-like conditions.Commun. Algebra 32 (2004), 3937-3953. Zbl 1068.13002, MR 2097439, 10.1081/AGB-200027791
Reference: [9] Mao, L., Ding, N.: FP-projective dimensions.Commun. Algebra 33 (2005), 1153-1170. Zbl 1097.16005, MR 2136693, 10.1081/AGB-200053832
Reference: [10] Megibben, C.: Absolutely pure modules.Proc. Am. Math. Soc. 26 (1970), 561-566. Zbl 0216.33803, MR 0294409, 10.1090/S0002-9939-1970-0294409-8
Reference: [11] Stenström, B.: Coherent rings and FP-injective modules.J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. Zbl 0194.06602, MR 0258888, 10.1112/jlms/s2-2.2.323
Reference: [12] Trlifaj, J.: Cover, Envelopes, and Cotorsion Theories.Lecture Notes for the Workshop ``Homological Methods in Module Theory'' Cortona, September 10-16 (2000).
Reference: [13] Zhou, D.: On $n$-coherent rings and $(n,d)$-rings.Commun. Algebra 32 (2004), 2425-2441. Zbl 1089.16001, MR 2100480, 10.1081/AGB-120037230
Reference: [14] Zhu, Z.: On $n$-coherent rings, $n$-hereditary rings and $n$-regular rings.Bull. Iran. Math. Soc. 37 (2011), 251-267. Zbl 1277.16007, MR 2915464
Reference: [15] Zhu, Z.: Some results on $(n,d)$-injective modules, $(n,d)$-flat modules and $n$-coherent rings.Comment. Math. Univ. Carol. 56 (2015), 505-513. Zbl 1363.16013, MR 3434225, 10.14712/1213-7243.2015.133
Reference: [16] Zhu, Z.: Coherence relative to a weak torsion class.Czech. Math. J. 68 (2018), 455-474. Zbl 06890383, MR 3819184, 10.21136/CMJ.2018.0494-16
.

Files

Files Size Format View
CzechMathJ_70-2020-3_3.pdf 337.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo