Previous |  Up |  Next

Article

Title: Generalized Hölder type spaces of harmonic functions in the unit ball and half space (English)
Author: Karapetyants, Alexey
Author: Restrepo, Joel Esteban
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 3
Year: 2020
Pages: 675-691
Summary lang: English
.
Category: math
.
Summary: We study spaces of Hölder type functions harmonic in the unit ball and half space with some smoothness conditions up to the boundary. The first type is the Hölder type space of harmonic functions with prescribed modulus of continuity $\omega =\omega (h)$ and the second is the variable exponent harmonic Hölder space with the continuity modulus $|h|^{\lambda (\cdot )}$. We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary. (English)
Keyword: Hölder space
Keyword: harmonic function
Keyword: variable exponent space
Keyword: modulus of continuity
MSC: 42B35
MSC: 46E15
MSC: 46E30
idZBL: 07250682
idMR: MR4151698
DOI: 10.21136/CMJ.2019.0431-18
.
Date available: 2020-09-07T09:35:27Z
Last updated: 2022-10-03
Stable URL: http://hdl.handle.net/10338.dmlcz/148321
.
Reference: [1] Arsenović, M., Kojić, V., Mateljević, M.: On Lipschitz continuity of harmonic quasiregular maps on the unit ball in $\mathbb R^n$.Ann. Acad. Sci. Fenn., Math. 33 (2008), 315-318. Zbl 1140.31003, MR 2386855
Reference: [2] Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory.Graduate Texts in Mathematics 137, Springer, New York (2001). Zbl 0959.31001, MR 1805196, 10.1007/b97238
Reference: [3] Blumenson, L. E.: A derivation of $n$-dimensional spherical coordinates.Am. Math. Mon. 67 (1960), 63-66. MR 1530579, 10.2307/2308932
Reference: [4] Chacón, G. R., Rafeiro, H.: Variable exponent Bergman spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 105 (2014), 41-49. Zbl 1288.30059, MR 3200739, 10.1016/j.na.2014.04.001
Reference: [5] Chacón, G. R., Rafeiro, H.: Toeplitz operators on variable exponent Bergman spaces.Mediterr. J. Math. 13 (2016), 3525-3536. Zbl 1354.30049, MR 3554324, 10.1007/s00009-016-0701-0
Reference: [6] Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis.Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg (2013). Zbl 1268.46002, MR 3026953, 10.1007/978-3-0348-0548-3
Reference: [7] Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Mathematics 2017, Springer, Berlin (2011). Zbl 1222.46002, MR 2790542, 10.1007/978-3-642-18363-8
Reference: [8] Duren, P., Schuster, A.: Bergman Spaces.Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). Zbl 1059.30001, MR 2033762, 10.1090/surv/100
Reference: [9] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces.Graduate Texts in Mathematics 199, Springer, New York (2000). Zbl 0955.32003, MR 1758653, 10.1007/978-1-4612-0497-8
Reference: [10] Karapetyants, A., Rafeiro, H., Samko, S.: Boundedness of the Bergman projection and some properties of Bergman type spaces.Complex Anal. Oper. Theory 13 (2019), 275-289. Zbl 1421.30070, MR 3905593, 10.1007/s11785-018-0780-y
Reference: [11] Karapetyants, A., Samko, S.: Spaces $ BMO_{p(\cdot)}(\Bbb D)$ of a variable exponent $p(z)$.Georgian Math. J. 17 (2010), 529-542. Zbl 1201.30072, MR 2719633, 10.1515/gmj.2010.028
Reference: [12] Karapetyants, A., Samko, S.: Mixed norm Bergman-Morrey-type spaces on the unit disc.Math. Notes 100 (2016), 38-48. Zbl 1364.30063, MR 3588827, 10.1134/S000143461607004X
Reference: [13] Karapetyants, A., Samko, S.: Mixed norm variable exponent Bergman space on the unit disc.Complex Var. Elliptic Equ. 61 (2016), 1090-1106. Zbl 1351.30042, MR 3500518, 10.1080/17476933.2016.1140750
Reference: [14] Karapetyants, A., Samko, S.: Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in Hardy type spaces.Fract. Calc. Appl. Anal. 20 (2017), 1106-1130. Zbl 1386.30052, MR 3721891, 10.1515/fca-2017-0059
Reference: [15] Karapetyants, A., Samko, S.: On boundedness of Bergman projection operators in Banach spaces of holomorphic functions in half-plane and harmonic functions in half-space.J. Math. Sci., New York 226 (2017), 344-354. Zbl 1386.30051, MR 3705149, 10.1007/s10958-017-3538-6
Reference: [16] Karapetyants, A., Samko, S.: Generalized Hölder spaces of holomorphic functions in domains in the complex plane.Mediterr. J. Math. 15 (2018), Paper No. 226, 17 pages. Zbl 1411.30039, MR 3878666, 10.1007/s00009-018-1272-z
Reference: [17] Karapetyants, A., Samko, S.: On mixed norm Bergman-Orlicz-Morrey spaces.Georgian Math. J. 25 (2018), 271-282. Zbl 1392.30023, MR 3808288, 10.1515/gmj-2018-0027
Reference: [18] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 1. Variable Exponent Lebesgue and Amalgam Spaces.Operator Theory: Advances and Applications 248, Birkhäuser/Springer, Basel (2016). Zbl 1385.47001, MR 3559400, 10.1007/978-3-319-21015-5
Reference: [19] Kokilashvili, V., Meskhi, A., Rafeiro, H., Samko, S.: Integral Operators in Non-Standard Function Spaces. Volume 2. Variable Exponent Hölder, Morrey-Campanato and Grand Spaces.Operator Theory: Advances and Applications 249, Birkhäuser/Springer, Basel (2016). Zbl 1367.47004, MR 3559401, 10.1007/978-3-319-21018-6
Reference: [20] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate texts in Mathematics 226, Springer, New York (2005). Zbl 1067.32005, MR 2115155, 10.1007/0-387-27539-8
Reference: [21] Zhu, K.: Operator Theory in Function Spaces.Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). Zbl 1123.47001, MR 2311536, 10.1090/surv/138
.

Files

Files Size Format View
CzechMathJ_70-2020-3_4.pdf 331.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo