Previous |  Up |  Next

Article

Title: Interval matrices with Monge property (English)
Author: Černý, Martin
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 5
Year: 2020
Pages: 619-643
Summary lang: English
.
Category: math
.
Summary: We generalize the Monge property of real matrices for interval matrices. We define two classes of interval matrices with the Monge property---in a strong and a weak sense. We study the fundamental properties of both types. We show several different characterizations of the strong Monge property. For the weak Monge property, we give a polynomial description and several sufficient and necessary conditions. For both classes, we study closure properties. We further propose a generalization of an algorithm by Deineko and Filonenko which for a given matrix returns row and column permutations such that the permuted matrix is Monge if the permutations exist. (English)
Keyword: Monge matrix
Keyword: interval matrix
Keyword: interval analysis
Keyword: linear programming
MSC: 65G99
MSC: 90C05
idZBL: 07285949
idMR: MR4160785
DOI: 10.21136/AM.2020.0370-19
.
Date available: 2020-09-23T13:49:27Z
Last updated: 2022-11-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148369
.
Reference: [1] Alefeld, G., Mayer, G.: Interval analysis: Theory and applications.J. Comput. Appl. Math. 121 (2000), 421-464. Zbl 0995.65056, MR 1780057, 10.1016/S0377-0427(00)00342-3
Reference: [2] Burkard, R. E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization.Discrete Appl. Math. 70 (1996), 95-161. Zbl 0856.90091, MR 1403225, 10.1016/0166-218X(95)00103-X
Reference: [3] Cechlárová, K., Szabó, P.: On the Monge property of matrices.Discrete Math. 81 (1990), 123-128. Zbl 0726.06010, MR 1054969, 10.1016/0012-365X(90)90143-6
Reference: [4] Deineko, V. G., Filonenko, V. L.: On the reconstruction of specially structured matrices.Aktualnyje problemy EVM i programmirovanije. Dnepropetrovsk, DGU (1979), Russian.
Reference: [5] Garloff, J., Adm, M., Titi, J.: A survey of classes of matrices possessing the interval property and related properties.Reliab. Comput. 22 (2016), 1-14. MR 3451674
Reference: [6] Greenlaw, R., Hoover, H. J., Ruzzo, W. L.: Limits to Parallel Computation: $P$-Completeness Theory.Oxford University Press, Oxford (1995). Zbl 0829.68068, MR 1333600
Reference: [7] Hladík, M.: An overview of polynomially computable characteristics of special interval matrices.Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications Studies in Computational Intelligence 835. Springer, Cham (2020), 295-310. 10.1007/978-3-030-31041-7_16
Reference: [8] Monge, G.: Mémoire sur la théorie des déblais et des remblais.De l'Imprimerie Royale, Paris (1781), French.
Reference: [9] Tarjan, R. E.: Edge-disjoint spanning trees and depth-first search.Acta Inf. 6 (1976), 171-185. Zbl 0307.05104, MR 0424598, 10.1007/BF00268499
.

Files

Files Size Format View
AplMat_65-2020-5_6.pdf 396.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo