Previous |  Up |  Next

Article

Keywords:
fuzzy implications; semicopula based implications; ($U,N$)-implications; semicopula; 2-increasing
Summary:
Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy implication is a ($U,N$)-implication. Moreover, the case that the semicopula based implication is 2-increasing (directionally decreasing, respectively) is also considered.
References:
[1] Baczyński, M., Jayaram, B.: On the characterization of (S, N)-implications. Fuzzy Sets Systems. 158 (2007), 1713-1727. DOI 10.1016/j.fss.2007.02.010 | MR 2341333
[2] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. Zbl 1293.03012
[3] Baczyński, M., Jayaram, B.: (S, N)-and R-implications: a state-of-the-artsurvey. Fuzzy Sets Systems 159 (2008), 1836-1859. DOI 10.1016/j.fss.2007.11.015 | MR 2428086
[4] Baczyński, M., Jayaram, B.: QL-implications: some properties and intersections. Fuzzy Sets Systems 161 (2010), 158-188. DOI 10.1016/j.fss.2008.09.021 | MR 2566237
[5] Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W.: Fuzzy implications based on semicopulas. Fuzzy Sets Systems 323 (2017), 138-151. DOI 10.1016/j.fss.2016.09.009 | MR 3660830
[6] Baczyński, M., Beliakov, G., Sola, H. B., Pradera, A.: Advances in Fuzzy Implication Functions. Springer-Verlag, Berlin 2013. DOI 10.1007/978-3-642-35677-3
[7] Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions. Europ. J. Oper. Res. 244 (2015), 300-308. DOI 10.1016/j.ejor.2015.01.018 | MR 3320787
[8] Durante, F., Sempi, C.: Semicopulae. Kybernetika 41 (2005), 315-328. MR 2181421 | Zbl 1249.26021
[9] Fodor, J. C.: Contrapositive symmetry of fuzzy implications. Fuzzy Sets Systems 69 (1995), 141-156. DOI 10.1016/0165-0114(94)00210-x | MR 1317882
[10] Grzegorzewski, P.: Probabilistic implications. Fuzzy Sets Systems 226 (2013), 53-66. DOI 10.1016/j.fss.2013.01.003 | MR 3068353
[11] Jenei, S.: A new approach for interpolation and extrapolation of compact fuzzy quantities. In: Proc. 21th Linz Seminar on Fuzzy Set Theory 2000, pp. 13-18.
[12] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[13] Liu, H.: On a new class of implications: (g, min)-implications and several classical tautologies. Int. J. Uncert. Fuzziness Knowl. Based Systems 20 (2012), 1-20. DOI 10.1142/s0218488512500018 | MR 2887551
[14] Liu, H.: Fuzzy implications derived from generalized additive generators of representable uninorms. IEEE Trans. Fuzzy Systems 21 (2013), 555-566. DOI 10.1109/tfuzz.2012.2222892
[15] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Trans. Fuzzy Systems 15 (2007), 1107-1121. DOI 10.1109/tfuzz.2007.896304
[16] Massanet, S., Torrens, J.: On a new class of fuzzy implication: $h$-implication and generalization. Inform. Sci. 181 (2011), 2111-2127. DOI 10.1016/j.ins.2011.01.030 | MR 2781774
[17] Massanet, S., Torrens, J.: Threshold generation method of construction of a new implication from two given ones. Fuzzy Sets Systems 205 (2012), 50-75. DOI 10.1016/j.fss.2012.01.013 | MR 2960107
[18] Massanet, S., Torrens, J.: On some properties of threshold generated implications. Fuzzy Sets Systems 205 (2012), 30-49. DOI 10.1016/j.fss.2012.01.018 | MR 2960106
[19] Massanet, S., Torrens, J.: On the vertical threshold generation method of fuzzy implication and its properties. Fuzzy Sets Systems 226 (2013), 32-52. DOI 10.1016/j.fss.2013.03.003 | MR 3068352
[20] Nelsen, R. B.: An Introduction to Copulas (Second edition). Springer, New York 2006. DOI 10.1007/0-387-28678-0 | MR 2197664
[21] Ouyang, Y.: On fuzzy implications determined by aggregation operators. Inform. Sci. 193 (2012), 153-162. DOI 10.1016/j.ins.2012.01.001 | MR 2900399
[22] Peng, Z.: A new family of (A, N)-implications: construction and properties. Iran. J. Fuzzy Systems 17 (2020), 129-145. DOI 10.1016/0165-0114(94)90082-5 | MR 4155840
[23] Pradera, A.: A review of the relationships between aggregation, implication and negation functions. Adv. Intell. Systems Comput. 228 (2013), 31-36. DOI 10.1007/978-3-642-39165-1_6 | MR 3588160
[24] Pradera, A., Beliakov, G., Bustince, H., Baets, B. De: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inform. Sci. 329 (2016), 357-380. DOI 10.1016/j.ins.2015.09.033
[25] Su, Y., Xie, A., Liu, H.: On ordinal sum implications. Inform. Sci. 293 (2015), 251-262. DOI 10.1016/j.ins.2014.09.021 | MR 3273566
[26] Yager, R. R.: On some new classes of implication operators and their role in approximate reasoning. Inform. Sci. 167 (2004), 193-216. DOI 10.1016/j.ins.2003.04.001 | MR 2103181
Partner of
EuDML logo