[2] Baczyński, M., Jayaram, B.:
Fuzzy Implications. Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008.
Zbl 1293.03012
[5] Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W.:
Fuzzy implications based on semicopulas. Fuzzy Sets Systems 323 (2017), 138-151.
DOI 10.1016/j.fss.2016.09.009 |
MR 3660830
[6] Baczyński, M., Beliakov, G., Sola, H. B., Pradera, A.:
Advances in Fuzzy Implication Functions. Springer-Verlag, Berlin 2013.
DOI 10.1007/978-3-642-35677-3
[11] Jenei, S.: A new approach for interpolation and extrapolation of compact fuzzy quantities. In: Proc. 21th Linz Seminar on Fuzzy Set Theory 2000, pp. 13-18.
[12] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[13] Liu, H.:
On a new class of implications: (g, min)-implications and several classical tautologies. Int. J. Uncert. Fuzziness Knowl. Based Systems 20 (2012), 1-20.
DOI 10.1142/s0218488512500018 |
MR 2887551
[14] Liu, H.:
Fuzzy implications derived from generalized additive generators of representable uninorms. IEEE Trans. Fuzzy Systems 21 (2013), 555-566.
DOI 10.1109/tfuzz.2012.2222892
[15] Mas, M., Monserrat, M., Torrens, J., Trillas, E.:
A survey on fuzzy implication functions. IEEE Trans. Fuzzy Systems 15 (2007), 1107-1121.
DOI 10.1109/tfuzz.2007.896304
[17] Massanet, S., Torrens, J.:
Threshold generation method of construction of a new implication from two given ones. Fuzzy Sets Systems 205 (2012), 50-75.
DOI 10.1016/j.fss.2012.01.013 |
MR 2960107
[19] Massanet, S., Torrens, J.:
On the vertical threshold generation method of fuzzy implication and its properties. Fuzzy Sets Systems 226 (2013), 32-52.
DOI 10.1016/j.fss.2013.03.003 |
MR 3068352
[24] Pradera, A., Beliakov, G., Bustince, H., Baets, B. De:
A review of the relationships between implication, negation and aggregation functions from the point of view of material implication. Inform. Sci. 329 (2016), 357-380.
DOI 10.1016/j.ins.2015.09.033