Previous |  Up |  Next

Article

Title: The study on semicopula based implications (English)
Author: Peng, Zuming
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 56
Issue: 4
Year: 2020
Pages: 662-694
Summary lang: English
.
Category: math
.
Summary: Recently, Baczyński et al. (2017) proposed a new family of implication operators called semicopula based implications, which combines a given a priori fuzzy implication and a semicopula. In this paper, firstly, the relationship between the basic properties of the priori fuzzy implication and the semicopula based implication are analyzed. Secondly, the conditions such that the semicopula based implication is a fuzzy implication are studied, the study is carried out mainly in the case that the semicopula is a special family semicopula and the priori fuzzy implication is a ($U,N$)-implication. Moreover, the case that the semicopula based implication is 2-increasing (directionally decreasing, respectively) is also considered. (English)
Keyword: fuzzy implications
Keyword: semicopula based implications
Keyword: ($U,N$)-implications
Keyword: semicopula
Keyword: 2-increasing
MSC: 03B52
MSC: 03E72
idZBL: Zbl 07286041
idMR: MR4168530
DOI: 10.14736/kyb-2020-4-0662
.
Date available: 2020-10-30T16:23:31Z
Last updated: 2021-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/148378
.
Reference: [1] Baczyński, M., Jayaram, B.: On the characterization of (S, N)-implications..Fuzzy Sets Systems. 158 (2007), 1713-1727. MR 2341333, 10.1016/j.fss.2007.02.010
Reference: [2] Baczyński, M., Jayaram, B.: Fuzzy Implications..Studies in Fuzziness and Soft Computing 231, Springer, Berlin Heidelberg 2008. Zbl 1293.03012
Reference: [3] Baczyński, M., Jayaram, B.: (S, N)-and R-implications: a state-of-the-artsurvey..Fuzzy Sets Systems 159 (2008), 1836-1859. MR 2428086, 10.1016/j.fss.2007.11.015
Reference: [4] Baczyński, M., Jayaram, B.: QL-implications: some properties and intersections..Fuzzy Sets Systems 161 (2010), 158-188. MR 2566237, 10.1016/j.fss.2008.09.021
Reference: [5] Baczyński, M., Grzegorzewski, P., Mesiar, R., Helbin, P., Niemyska, W.: Fuzzy implications based on semicopulas..Fuzzy Sets Systems 323 (2017), 138-151. MR 3660830, 10.1016/j.fss.2016.09.009
Reference: [6] Baczyński, M., Beliakov, G., Sola, H. B., Pradera, A.: Advances in Fuzzy Implication Functions..Springer-Verlag, Berlin 2013. 10.1007/978-3-642-35677-3
Reference: [7] Bustince, H., Fernandez, J., Kolesárová, A., Mesiar, R.: Directional monotonicity of fusion functions..Europ. J. Oper. Res. 244 (2015), 300-308. MR 3320787, 10.1016/j.ejor.2015.01.018
Reference: [8] Durante, F., Sempi, C.: Semicopulae..Kybernetika 41 (2005), 315-328. Zbl 1249.26021, MR 2181421
Reference: [9] Fodor, J. C.: Contrapositive symmetry of fuzzy implications..Fuzzy Sets Systems 69 (1995), 141-156. MR 1317882, 10.1016/0165-0114(94)00210-x
Reference: [10] Grzegorzewski, P.: Probabilistic implications..Fuzzy Sets Systems 226 (2013), 53-66. MR 3068353, 10.1016/j.fss.2013.01.003
Reference: [11] Jenei, S.: A new approach for interpolation and extrapolation of compact fuzzy quantities..In: Proc. 21th Linz Seminar on Fuzzy Set Theory 2000, pp. 13-18.
Reference: [12] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [13] Liu, H.: On a new class of implications: (g, min)-implications and several classical tautologies..Int. J. Uncert. Fuzziness Knowl. Based Systems 20 (2012), 1-20. MR 2887551, 10.1142/s0218488512500018
Reference: [14] Liu, H.: Fuzzy implications derived from generalized additive generators of representable uninorms..IEEE Trans. Fuzzy Systems 21 (2013), 555-566. 10.1109/tfuzz.2012.2222892
Reference: [15] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions..IEEE Trans. Fuzzy Systems 15 (2007), 1107-1121. 10.1109/tfuzz.2007.896304
Reference: [16] Massanet, S., Torrens, J.: On a new class of fuzzy implication: $h$-implication and generalization..Inform. Sci. 181 (2011), 2111-2127. MR 2781774, 10.1016/j.ins.2011.01.030
Reference: [17] Massanet, S., Torrens, J.: Threshold generation method of construction of a new implication from two given ones..Fuzzy Sets Systems 205 (2012), 50-75. MR 2960107, 10.1016/j.fss.2012.01.013
Reference: [18] Massanet, S., Torrens, J.: On some properties of threshold generated implications..Fuzzy Sets Systems 205 (2012), 30-49. MR 2960106, 10.1016/j.fss.2012.01.018
Reference: [19] Massanet, S., Torrens, J.: On the vertical threshold generation method of fuzzy implication and its properties..Fuzzy Sets Systems 226 (2013), 32-52. MR 3068352, 10.1016/j.fss.2013.03.003
Reference: [20] Nelsen, R. B.: An Introduction to Copulas (Second edition)..Springer, New York 2006. MR 2197664, 10.1007/0-387-28678-0
Reference: [21] Ouyang, Y.: On fuzzy implications determined by aggregation operators..Inform. Sci. 193 (2012), 153-162. MR 2900399, 10.1016/j.ins.2012.01.001
Reference: [22] Peng, Z.: A new family of (A, N)-implications: construction and properties..Iran. J. Fuzzy Systems 17 (2020), 129-145. MR 4155840, 10.1016/0165-0114(94)90082-5
Reference: [23] Pradera, A.: A review of the relationships between aggregation, implication and negation functions..Adv. Intell. Systems Comput. 228 (2013), 31-36. MR 3588160, 10.1007/978-3-642-39165-1_6
Reference: [24] Pradera, A., Beliakov, G., Bustince, H., Baets, B. De: A review of the relationships between implication, negation and aggregation functions from the point of view of material implication..Inform. Sci. 329 (2016), 357-380. 10.1016/j.ins.2015.09.033
Reference: [25] Su, Y., Xie, A., Liu, H.: On ordinal sum implications..Inform. Sci. 293 (2015), 251-262. MR 3273566, 10.1016/j.ins.2014.09.021
Reference: [26] Yager, R. R.: On some new classes of implication operators and their role in approximate reasoning..Inform. Sci. 167 (2004), 193-216. MR 2103181, 10.1016/j.ins.2003.04.001
.

Files

Files Size Format View
Kybernetika_56-2020-4_4.pdf 619.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo