Previous |  Up |  Next

Article

Title: The bicrossed products of $H_4$ and $H_8$ (English)
Author: Lu, Daowei
Author: Ning, Yan
Author: Wang, Dingguo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 70
Issue: 4
Year: 2020
Pages: 959-977
Summary lang: English
.
Category: math
.
Summary: Let $H_4$ and $H_8$ be the Sweedler's and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through $H_8$ and $H_4$ (equivalently, any bicrossed product between the Hopf algebras $H_8$ and $H_4$) must be isomorphic to one of the following four Hopf algebras: $H_8\otimes H_4,H_{32,1},H_{32,2},H_{32,3}$. The set of all matched pairs $(H_8,H_4,\triangleright ,\triangleleft )$ is explicitly described, and then the associated bicrossed product is given by generators and relations. (English)
Keyword: Kac-Paljutkin Hopf algebra
Keyword: Sweedler's Hopf algebra
Keyword: bicrossed product
Keyword: factorization problem
MSC: 16S40
MSC: 16T05
MSC: 16T10
idZBL: 07285973
idMR: MR4181790
DOI: 10.21136/CMJ.2020.0079-19
.
Date available: 2020-11-18T09:43:15Z
Last updated: 2023-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/148405
.
Reference: [1] Agore, A. L.: Classifying bicrossed products of two Taft algebras.J. Pure Appl. Algebra 222 (2018), 914-930. Zbl 1416.16033, MR 3720860, 10.1016/j.jpaa.2017.05.014
Reference: [2] Agore, A. L.: Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$.SIGMA, Symmetry, Integrability Geom. Methods Appl. 14 (2018), Article ID 027. Zbl 1414.16027, MR 3778923, 10.3842/SIGMA.2018.027
Reference: [3] Agore, A. L., Bontea, C. G., Militaru, G.: Classifying bicrossed products of Hopf algebras.Algebr. Represent. Theory 17 (2014), 227-264. Zbl 1351.16031, MR 3160722, 10.1007/s10468-012-9396-5
Reference: [4] Agore, A. L., asitu, A. Chirv\v, Ion, B., Militaru, G.: Bicrossed products for finite groups.Algebr. Represent. Theory 12 (2009), 481-488. Zbl 1187.20023, MR 2501197, 10.1007/s10468-009-9145-6
Reference: [5] Bontea, C. G.: Classifying bicrossed products of two Sweedler's Hopf algebras.Czech. Math. J. 64 (2014), 419-431. Zbl 1322.16022, MR 3277744, 10.1007/s10587-014-0109-6
Reference: [6] Chen, Q., Wang, D.-G.: Constructing quasitriangular Hopf algebras.Commun. Algebra 43 (2015), 1698-1722. Zbl 1327.16017, MR 3314638, 10.1080/00927872.2013.876036
Reference: [7] Kassel, C.: Quantum Group.Graduate Texts in Mathematics 155, Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [8] Kats, G. I., Palyutkin, V. G.: Finite ring groups.Trans. Mosc. Math. Soc. 15 (1966), 251-294 translation from Tr. Mosk. Mat. O.-va 15 1966 224-261. Zbl 0218.43005, MR 0208401
Reference: [9] Keilberg, M.: Automorphisms of the doubles of purely non-abelian finite groups.Algebr. Represent. Theory 18 (2015), 1267-1297. Zbl 1354.16042, MR 3422470, 10.1007/s10468-015-9540-0
Reference: [10] Keilberg, M.: Quasitriangular structures of the double of a finite group.Commun. Algebra 46 (2018), 5146-5178. Zbl 1414.16028, MR 3923748, 10.1080/00927872.2018.1461883
Reference: [11] Maillet, E.: Sur les groupes échangeables et les groupes décomposables.Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02. MR 1504357, 10.24033/bsmf.617
Reference: [12] Majid, S.: Physics for algebraists: non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction.J. Algebra 130 (1990), 17-64. Zbl 0694.16008, MR 1045735, 10.1016/0021-8693(90)90099-A
Reference: [13] Masuoka, A.: Semisimple Hopf algebras of dimension 6, 8.Isr. J. Math. 92 (1995), 361-373. Zbl 0839.16036, MR 1357764, 10.1007/BF02762089
Reference: [14] Panov, A. N.: Ore extensions of Hopf algebras.Math. Notes 74 (2003), 401-410 translation from Mat. Zametki 74 2003 425-434. Zbl 1071.16035, MR 2022506, 10.1023/A:1026115004357
Reference: [15] Pansera, D.: A class of semisimple Hopf algebras acting on quantum polynomial algebras.Rings, Modules and Codes Contemporary Mathematics 727, American Mathematical Society, Providence (2019), 303-316. Zbl 07120022, MR 3938158, 10.1090/conm/727
Reference: [16] Takeuchi, M.: Matched pairs of groups and bismash products of Hopf algebras.Commun. Algebra 9 (1981), 841-882. Zbl 0456.16011, MR 0611561, 10.1080/00927878108822621
Reference: [17] Wang, D.-G., Zhang, J. J., Zhuang, G.: Hopf algebras of GK-dimension two with vanishing Ext-group.J. Algebra 388 (2013), 219-247. Zbl 1355.16033, MR 3061686, 10.1016/j.jalgebra.2013.03.032
Reference: [18] Wang, D.-G., Zhang, J. J., Zhuang, G.: Connected Hopf algebras of Gelfand-Kirillov dimension four.Trans. Am. Math. Soc. 367 (2015), 5597-5632. Zbl 1330.16022, MR 3347184, 10.1090/S0002-9947-2015-06219-9
Reference: [19] Wang, D.-G., Zhang, J. J., Zhuang, G.: Primitive cohomology of Hopf algebras.J. Algebra 464 (2016), 36-96. Zbl 1402.16019, MR 3533424, 10.1016/j.jalgebra.2016.07.003
Reference: [20] Xu, Y., Huang, H.-L., Wang, D.-G.: Realization of PBW-deformations of type $A_n$ quantum groups via multiple Ore extensions.J. Pure Appl. Algebra 223 (2019), 1531-1547. Zbl 06994941, MR 3906516, 10.1016/j.jpaa.2018.06.017
Reference: [21] Zappa, G.: Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro.Atti 2. Congr. Un. Mat. Ital., Bologna 1940 (1942), 119-125 Italian. Zbl 0026.29104, MR 0019090
.

Files

Files Size Format View
CzechMathJ_70-2020-4_5.pdf 311.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo